tter
980

septembe,. 1

-
= = "
- - B
[} - <
by © -
oA a L "
= a
"

Pegix] 1 l
t

(2] o
L od m ~ a —
gy S m o ome - e
=Y m -
R B TR R o T G
B = -
m L=} - m
] L “omo+om .
= ! 2 m by
oom a pt o B
oM m - "as .
by mqy oo = om -
— o O g om .
—_— -1-| : :‘ =
o — f 3 P
. oom e ="
| m o 2.
a1 « O g Y@
m e [
m - > U
- [Xl m
Sy b . m o
- m — 0 a 3 r!r R
4 m - -~ v om
a o mo A
— e) m ¢ O 5
=L . s 5
2 f
o HO
iy =) ’
> -
m .
" 0
2} .o
“ X
n -
JON
a
-
- . ©
L
0o
| o
F: N—
m -~
mm o
O &
O |
n o~
~ m + M
o,

- Te’eprinter

Editorial

In case you thought we’d forgotten you, we're back again, with the usual miscellany
of notes and ideas. Major items this time are an article by Ray Fox on RS-232
interfaces for printers, and a feature on the dreaded ‘garbage collector’ problemin
BASIC’s string-handling (solved at last by Dick Stibbons).

Following on from the notes in the last issue, we've been very busy incorporating
everyone’s ideas and requests into a new ROM for all the OSI and UK101 BASIC-in-
ROM machines — and driving ourselves more than halfway round the bend in the
process! (Its long pre-production testing period is the main reason why this issue is
slightly late). But CEGMON, the new ROM, is complete and very extensively tested,

elsewhere in this issue; but since it does contain all of the features that everybody
asked for — such as true rubout, editing, screen-clear and machine-code save —
and quite a lot of the other ideas — like a programmable screen-handler, and a fair
chunk of the Extended Monitor now in ROM — we feel it ought to ‘ease our
members firmware headaches’ as promised!

This issue is the last of the present volume, so if you were one of the many
members whose subscription started with or was backdated to the beginning, you'll
find a renewal/resubscription formin this copy of the Newsletter. Everyone else will
be getting theirs as their four-issue sub runs out.

The good news is that we are going bimonthly — judging from the number of
phone calls | get as each issue approaches, three months is too long to wait between
‘fixes” for many of you! We also now have enough members to make bimonthly
production feasible. The bad news, of course, is that the six-issue sub will be twice
the original one, namely £10 — partly because of the higher effective production
cost per issue, partly because of ever-increasing postal charges (up again in
November, and partly because inflation and the like hurt us as much as everyone
else! But we hope that the increase will not be a painful one, and thatyou believe it
to be worthwhile.

We're very glad to see that this Newsletter is indeed becoming everyone’s, rather, ,
than merely a product of your editor’s pen. In addition to the articles here, we als ¢
received two implementations of FORTH for UK101 (from Bill Powell of the British
FigFORTH group, and from Roger Cuthbert), on which more nextissue; a complete
text editor, again for the UK101, from Peter Maughan; games from Neil Cannon and
Dave Caine; and many phone calls and other comments for which I have, of course,
lost the few notes thatl made. Many thanks to everyone — it makes our work worth-
while as far as we are concerned, and we hope it does for you too.

and has been available for a couple of weeks now as | write this. More details. «‘

We do definitely want to hear from you, and to know what you are doing. But
some people seem unclear as to our addresses and what we do, so:

Hardware/technical development:
George Chkiantz and Richard Elen at 12 Bennerley Road, London SW11 6DS.

Editor/documentation development:
Tom Graves at 19a West End, Street, Somerset BA16 0LQ.

Y

' Documentation Corner

Continuing CLEAR
Jack Pike says “I use CLEAR to clear variables and strings when trying to find out how
much RAM the program text occupies. More importantly, though, | have used it for
checking whether the program will run with restricted RAM (eg. when squeezing
an 8K program into 4K) or to test ‘error capture’ in programs which are protected
against having insufficient RAM to run. A typical substitute for RUN would be:
CLEAR: DIM DUMMY (FRE(0)/4 -4): GOTO first program line
| am aware that input of any unused line number (eg. 0) also ‘CLEARs’ the variables
etc. but | prefer to use CLEAR. | think it is definitely NULL for the booby prize!”
Peter Maughan comments that he uses CLEAR in order to wipe all existing values
when ‘chaining’ sub-programs, so that all-too-commonly-used labels like 1, T, X and
» Y start afresh each time rather than picking up any value they may have had in the
“#7 previous sub-program.

INPUT again

Jack Pike’s problem mentioned last issue, that of including commas and colons
within a string INPUT, is still unsolved; but several members (Roger Beaumont
among them) have pointed out that you can build an ‘INPUT’ via a USR call to the
keyboard, looking for your own delimiter rather than for commas, colons, quotes or
whatever. The basic sequence is:

1000 POKE 11,0: POKE 12,253 : REM set up USR call to keyboard subroutine
1010 A$ = "” : REM clear the ‘INPUT’ string

1020 X = USR(X): B$ = CHR$(PEEK(531)) : REM CHR$(PEEK(533)) under CEGMON
1030 IF B$ = delimiter THEN RETURN

1040 IF LEN(A$) > 254 THEN RETURN : REM or do your own error trap

1050 A$ = A$ + B$

1060 GOTO 1020 o
The danger with this dummy ‘INPUT” is our old friend the ‘garbage collector’ — }f
you have any string arrays in your program, the reshuffling of string space that this
routine will demand will cause the garbage-collector bug in BASIC-in-ROM to
Orash the program.

Jack Pike sent in another comment — not a puzzle this time! —to remind us that
INPUT supports the use of multiple commas — ,,,,,,, — to INPUT zeroes or, more
importantly, empty strings. This feature is useful, he says, when trying to INPUT a
variable number of significant values or strings to a program, for by ho_Idlng the
comma key down after the last significant value, the auto-repeat rapidly gives more
than enough commas to satisfy the INPUT. The extra commas are ignored, so the
string length is not critical. But it is a pity, he comments, that the,, construct was not
arranged to support a ‘null’ data input which left the variable values unaltered.

The other OM ERROR — out of memory in the stack
David Cannon writes: “Being short on line numbers, | extended a program by a
GOSUB. Later | modified the subroutine to GOTO part of the main program. All
entwell until the eighth or ninth time through the game, and then ‘OM ERROR’ —
e pfstack space! .
eing used to programming in CORAL 66 which allows you to jump out of

subroutines, it took me ages to sort out this bug. Rub the point home to the other
members and save them time.”

GOSUBs, and also FOR:NEXT loops, push their return addresses on the stack. If
you jump out of a GOSUB, and in certain cases out of a FOR:NEXT loop, these return
addresses are left untouched; the next time round pushes the same return address,
and so on up the stack. The out-of-memory check for the stack is a little bizarre in
BASIC-in-ROM because of the way OSI has organised its IRQ and NMI locations
(rightin the middle of the stack!) — for those interested, the error check is at $A272.

The reason why you get an OM ERROR after many immediate-mode actions (like
a POKE) after warm-start is because BREAK resets the stack to $(07)28; warm-start,
however, expects the stack to be at $(07)FF! — and that is where it resets it after its
OM ERROR call, or after any ERROR. If you want to do a string of POKEs after a

warms-start, force a SN ERROR (syntax error) first, by typing a non-command such as
RUBBISH!

Aligning output on the decimal point

In last issue Matthew Soar gave us a function to align numerical output on the
decimal point. It was, of course, reproduced without one of its brackets! Two other
functions to do the same job, but for all numbers, were sentin by J.R. Parkes and Ray
Fox. J.R. Parkes’ function is:

PRINT TAB(D-INT(LOG(X)*0.47 +3)); X

Ray Fox says that to cater for numbers greater than or equal to 0, use the same
routine as last issue, but with the following function:

DEF FNP(X) = -LEN(STR$(INT(X)))-(ABS(X)<1) +(X)

However, he says, the function can be made very general, catering for numbers
whose values range from negative through to positive. Then:

DEF FNP(X) = -LEN(STR$(SGN(X)*INT(ABS(X))))-(ABS(X)<1) +(X=0)

where incidentally SGN(X)*INT(ABS(X)) equates to FIX(X) — a command not
available in OSI BASIC.

‘Missing’ characters in C2-to-Base-2 printer interface

It may be found as in my case that when outputing a stream of data via the RS-232
interface to the printer which includes CR/LF or Vertical Tabs etc. (i.e. functions that
cause the printer to a mechanical operation apart from actually printing) followed
immediately by data, that the first character of the data is lost. Whilst setting NULLs
will solve the problem at the beginning of each new line, it does not do so where
Vertical Tabs are concerned. | have found it necessary to delay the CRT print rate by
POKEing a delay into $0206 (518,,) — this does not actually slow down the SAVE print
rate but allows the printer to return a busy signal before the computer packs a
second character into the double-buffered ACIA. The values | use are: POKE 518,3
when dumping at 4800 baud; or POKE 518,80 when dumping at 300 baud. My C2 is
operating at 2MHz however, so it will be necessary to change these values for 1MHz
machines — if in fact the problem exists at that speed. | understand C1 users have
had no problems. Incidentally, to operate the ACIA at 4800 baud on a C2 do POKE
64512,179: POKE 64512,176 in immediate-mode.

Ed: The reason why the character buffer can be over-written can be seen in the ‘
#)

machine-code of the output loop in the monitor ROM and in BASIC’s PRINT an

output loops. As soon as the ACIA has taken the character at the end of the loop 7% .
another characteristhrown at the screen and then to the ACIA, without any internaf

3

delay at all. The only delay is NULL, collected after a carriage-return. In some cases it
would seem that, particularly at 2MHz machine speed and 300 baud transmission
speed, the next character is thrown into the ACIA as soon as the old character has
been taken away — in other words before the printer has had any chance to process
it and, in the case of mechanical operations, to send out a ‘busy’ signal. POKEing 518
with a delay (which operates within the screen-handler) delays the effective output
to the ACIA to the pointwhere the Base-2 does have time to catch up; buttoolonga
delay will take the problem the other way, with characters being repeated in the
main run. Experiment with delay values as required — particularly if you’ve built a
‘home-brew’ interface!

BASIC block-delete

One of the more annoying absences from the command list in OSI’s BASIC is a
block-delete of program lines. David Caine sent us this routine, which works by
‘sending’ BASIC a long string of ‘empty’ line numbers. It’s a little slow for clearing
large or widely spaced blocks — but it’s better than laboriously typing numbersin by
hand!

62000 FOR | = 7936 TO 8026: READ J: POKE I,J: NEXT

62001 DATA 162,199,189,131,162,157,33,2,202,208,247,173,89

62002 DATA 31,141,202,2,173,90,31,141,203,2,169,13,32

62003 DATA 45,191,165,240,133,173,165,241,133,174,32,98,185

62004 DATA 162,0,134,14,189,64,215,201,95,240,6,149,19

62005 DATA 232,76,43,31,169,0,149,19,133,196,169,18,133

62006 DATA 195,76,34,2,230,241,208,2,230,240,56,165,243

62007 DATA 229,241,165,242,229,240,16,193,76,116,162,69,31

62010 PRINT: PRINT "Block Delete”: INPUT “Start, Stop”;l,)

62011 L1 = INT(1/256): POKE 240,L1: L1 = 1-(256*L1): POKE 241,11

62012 H1 = INT()/256): POKE 242,H1: H1 = J-(256*H1): POKE 243,H1

62013 POKE 11,0: POKE 12,31: X = USR(X)

The routine as written is for an 8K C2, and will need some adaptation for other
machines — as it stands it will not run on a C1, or under CEGMON (part of the

_ routine starts at $0222, where CEGMON’s screen look-up table starts). Two data

bytes in line 62004 (64, 215) are the screen address where the cursor appears after a
carriage return on a C2 (40, D7 hex) —these will need to be changed accordingly for
C1/Superboard and UK101.

Notes on RND

The notes on RND which we mentioned in last issue were from John Partridge.
Following on from the reference we made to random-number generation in
Newsletter 2, he says:

The random number is stored as a 4-byte binary number (see Newsletter 2), and
this is changed when RND is called. The first random number loaded on Cold-Start
is 80 4F C7 52 — and exactly the same sequence will be followed after each Cold-
Start. The first 938 random numbers produced do not repeat, but after this aloop of
1861 different numbers is produced, which then repeats continuously.

Changing RND(1) to RND(2) or any other positive integer does not affect the

cequence at all. Using RND(0) will give a repeat of the last random number called.

'Using RND(X), where X is a negative integer, will start a new and different number
sequence, which in most cases degenerates into the same 1861-number loop as

4

before. However, a few of these degenerate into a loop of only 279 different
numbers. The best that | have found is started by calling RND(-5) before using
RND(1) in the usual way: this gives about 5000 different numbers. On the other
hand, calling RND(-79) before RND(1) results in only 403 numbers.

The RND routine is located at $BBCO and can be called from a machine-code
program, with a new number being taken from $D4-D7 If a new range of random
numbers from 0O$00-FF is required, then $D6 or $D7 should be used. A smaller range
can be produced by using the AND operation. For example:

LDA $D6

AND 0$07

TAY
will leave in Y a random number in the range 0 to 7. | have used this in a machine-
code program to produce random movement on the screen (see later). For those
interested, the repeating sequences can be shown w1th this short program:

10 R =RND(-79)

20 R=RND(1): IF R>>0.999 THEN PRINT X,R

30 X=X+1: GOTO 20
— but the exact entry to the loop of numbers takes more finding!

Finally, a short program to show Brownian movement, using runnlng entirely in
machine code and using BASIC’s RND function. The BASIC program is the loader
for the machine-code; it is given here as for an 8K machine.

120 REM - Brownian Movement - M/c Mk.111
130 REM - Runs entirely in machine-code once going
140 REM - To stop, press BREAK
|+ 1000 FOR X=7936 TO 8016: READ A: POKE X,A: NEXT
3 1004 REM - N=Number of dots - do not exceed 36
' 1005 N =32
1010 A=0: POKE 7986,2*N
1014 REM - Puts start locations in page-0
1015 FOR X=0 TO N: POKE 14+2*X,208 +A: A=A+1: IF A>7 THEN A=0
1020 NEXT
1030 POKE 11,0: POKE 12,31
1040 FOR X=0 TO 30: PRINT: NEXT
1050 P=USR(P)
2000 DATA 174,80,31,169,32,129,19,165
2010 DATA 214,41,14,168,24,216,185,64
2020 DATA 31,117,19,149,19,232,200,185
2030 DATA 64.31,117,19,201,208,16,2
2040 DATA 169,215,201,216,48,2,169,208
2050 DATA 149,19,202,169,166,129,19,232
2060 DATA 232,224,64,208,2,162,0,142
2070 DATA 80,31,32,192,187,76,0,31
2080 DATA 1,0,63,0,64,0,65,0
2090 DATA 255,255,191,255,192,255,193,255

2100 DATA 0

2120 REM

2130 REM - For an interesting variation, include 1024 POKE 7940,171
5

R —

Relocating the Extended Monitor (ExMon)

David Butler and Michael Whittle both wrote in about relocating ExXMon — since
the standard version supplied by OSI and Comp is located at the end of the first 4K,
for an assumed 4K machine. This means that the standard version is right in the
middle of the RAM on an 8K machine, and incidentally also in the middle of the
Assembler. ExMon does have a ‘relocate’ function of its own, which corrects all
subroutine calls and jump addresses, but look-up tables and the like are either
scrambled (if they appear to be jumps or JSRs) or left untouched. To move ExMon to
anywhere else in memory, its jump-table must be changed by hand after using the
‘relocate’ — the jump table resides at $0960-0999 in the standard version. The jumps
are in pairs, with the low byte first as usual. To move ExMon to the top of an 8K
memory, for example, 0$70 must be added to every high byte — the contents of
0961, 0963, 0965 and so on. $0962-0963 are the address for ExMon’s ‘A’ routine (print

»

ntents of Accumulator), $0964-0965 is the address for ‘B’, and so on to ‘Z’.

Michael Whittle included several other comments on ExMon in his letter. One
was a complete patch to allow ExMon to ‘Save’ in the ROM Monitor’s hex-digit
format rather than the strangely unreliable checksum — the listing is below. This
dump routine is shorter than the checksum dumper, so — as he says — ‘there is
room for another goody’, namely a routine to restore the vital (for BASIC) addresses
$00D1-D6, and having done so, to jump to BASIC. In order to implement this
routine, $0994-5 (or their relocated equivalents) need to be set to point to the
routine’s start address, so that the spare ‘Z’ command will implement the jump from
ExMon to BASIC. Further monitor enhancements are to use SPACE instead of CTRL-] to
increment to the next line in ‘@’ and ‘Q” modes (this is more important to UK101
users than those with OSI machines, since the standard UK101 monitor decodes the
old LINE-FEED key (i.e. CTRL-J) as ‘up-arrow’ instead). The change is achieved by
changing O$0A to 0$20 at (standard) locations $0B70 and $0D2F. Itis also helpful, says
Michael, to make the quotes (for ASCII) advance to the next line, enabling an ASCII
string to be listed rapidly. This is achieved by changing $0B87 from 0%$60 to 0O%$8B.

Listing to change ExMon’s checksum save to digit-pair save (addresses as for ExMon

relocated at top of 8K memory space).
.C3 207FFF JSR $FFF7 ; ‘S” entry point — set SAVE flag

EC6 201C1B JSR $1B1C ; get start and stop addresses — store in DC-DF
1EC9 A93A LDA O$3A ; ‘2" prompt for jump address
1ECB 2069FF JSR $FF69 ; output routine — adjust on C2 or under CEGMON
1ECE 20A31A JSR $1AA3 ; get byte — address high
1ED1 85C1 STA $C1 ; store in C1
1ED3 20A31A JSR $1AA3 ; get address low
1ED6 85C0 STA $CO ; store in CO
1ED8 A92E LDA O$2E ; ‘. for address mode
2069FF JSR $FF69 ; output
A5DD LDA $DD ; start address — hlgh byte
20AC1A JSR $1AAC ; output as hex pair
A5DC LDA $DC ; start address — low byte
20AC1A JSR $1AAC ; output as hex pair
A92F LDA O$2F s ch))r data mode
2069FF JSR $FF69 ; output
© 5 A200 LDX O$00 ; clear X register as pointer
A1DC LDA ($DC,X) ; get next data byte

20AC1A JSR $1AAC ; output data byte as hex pair

1F20 8D0502 STA $0205
1F23 4C0918 JMP $1809

clear SAVE flag
end — jump to ExMon warm-start

1EF3 A90D LDA 0$0D ; ‘CR’
1EF5 20B1FC JSR $FCB1 ; output CR to cassette only — JSR $BF15 on C2
1EF8 E6DC INC $DC ; increment low byte of address pointer
TEFA D002 BNE $1EFE ; skip next instruction if low-byte not zero
1EFC E6DD INC $DD ; increment high-byte of address if low-byte was zero
1EFE AS5SDE LDA $DE ; get end-address, low byte
1F00 C5DC CMP $DC ; compare against current address pointer, low-byte
1F02 DOE8 BNE $1EEC ; loop back for next data byte if no match
1F04 AS5DF LDA $DF ; get high-byte of end address

" 1F06 C5DD CMP $DD ; compare with current address pointer, high byte
1F08 DOE2 BNE $1EEC ; loop back for next data byte if no match (i.e. not end)
1FOA A92E LDA O$2E ; . for address mode (for restart/jump address)
1F0C 2069FF JSR $FF69 ; output
1FOF A5C1 LDA $C1 ; get restart/jump address, high byte
111 20AC1A JSR $1AAC ; output as hex pair
1F14 A5CO0 LDA $C0 ; get restart/jump address, low byte \
1F16 20AC1A JSR $1AAC ; output as hex pair
1F19 A947 LDA 0$47 ; ‘G’ for ROM monitor ‘go’” command
1F1B 2069FF JSR $FF69 , output
1F1E A900 LDA 0$00 ; get null

1F26 A206 LDX 0%06 ; ‘Z’ entry point — set counter for 6 bytes

1F28 BD321F LDA $1F32,X ; load data saved before overwrite by disassembler
1F2B 95D0 STA $D0,X ; restore to D1-Dé6

1F2D CA DEX ; decrement byte counter

1F2E DOF8 BNE $1F28 ; loop back until all restored

1F30 2074A2 JSR $A274 ; jump to BASIC warm-start

1F33 E9DO SBC 0O$D0 ; data only — tail-end of BASIC’s 00BC subroutine
1F35 60 RTS ; data

1F36 80 n? ; data

1F37 4F ? ; data

1F38 c7 2?2 ; data

1F39 EA NOP ;

1F3A EA NOP ; pad to start of ExXMon ‘V’ routine at 7TF3B

Video display mod
killing ‘overscan’ on C1/Superboard and UK101

Here is a simple way of achieving the aspiration of many Superboard/UK101 owners
— that of getting rid of the ‘overscan’ limitation to the number of characters per TV
line. The solution, whilst not elegant, is extremely simple, costing less than £5.00,
using three or four chips and a few passive components. | will only describe the
method in general terms, allowing for all the variants of the systems readers may
have. But anyone who basically understands the guts of their machine will be able to
implement the mod in a few evenings. The question of using the mod to its full

length; others stuck with ROM systems will only be able to use the expanded scree .

advantage is a bit trickier; 1 use a RAM-based operating so | can use the full lj:p
through POKEs during games. [Special versions of CEGMON can be ‘blown’ i’ !

required, however — Ed.]

7

The crucial aspect of the solution is the provision of two clocks: one for the
processor and cassette interface, the other for the video. Inspection of the circuit
diagram shows that the first part needs only two signals — the @y-in and the input to
the TxCLK system (U57). These are readily provided by taking the 4MHz output of
the crystal system (pin 3, U58) and putting it through a 74-163 (or dividing chain
equivalent to it) which will provide 2MHz or TMHz signals for the processor and a
signal that will divide down to the equivalent of 600 baud for the cassette system. If
300 baud operation is needed then a further divide-by-two stage (e.g. a 74-74) is
simply added.

OVERSCAN DELAY GENERATOR, VipEo Clow & GATE
S00wpF
11
Litpl S
e
——sTO0P 77 46— WIOK
20012
srop p (To PIN2., UZD]

Dwibing Crain_ For Processor. Croox

otH
10, 2 LMHz
10 e IN
=15
5 16 ——>2MHz
[B——a3TMHz
—# 12—
_:jﬁ i FOR. 60@BAUD
=2 for. 300 BAUD
Vi

TR

Now for the video part. This all uses the ‘CLK’ signal — i.e. only one input is
required to operate it all. Assuming we have cut the CLK trace with the crystal
controlling only the processor and cassette, we need only one other oscillator to
drive the whole video system. In principle another quartz crystal would seem
desirable but instead we provide an adjustable clock using a Schmitt trigger 74-132
gate with a controllable RC network. We can now get the characters coming out
faster than the old system by taking the frequency above 4MHz, and hence get
more characters per line. But there’s one thing missing, the characters are still being
spewed out in the overscan region. To solve this problem all we need do is to stop
the clock when you're overscanning! This is very simple to do: when the horizontal
sync pulse comes along we initiate a delay equal to the overscan time. The delay
pulse gates the clock (using the same "132 gate chip as provides the clock) and all
video addressing stops. Because the video system is completely isolated from the
processor system, the processor functions perfectly normally; all this stopping and
starting of the video clock at its own odd frequency has no effect on the processor or
cassette.

It may sound from the description that to set all this up would require sophis-
ticated scopes and timing gear! In fact | don’t possess ascope, and all you need to do
is get your resistors and capacitors in the right sort of area and then play with the
resistances till you get the right combination of delay (so you lose no characters to
the left of the screen) and of speed of video output (so you lose none to the right).
Surprisingly the delay is very stable, even without crystal control, provided you use
decent trim pots. Initial versions with untidy wiring showed some interference
between various signals, causing jitter on the screen and, in one bad case, causing
the processor to crash at 2MHz. But as soon as the wiring was tidied up (as tidy as
Veroboard can be) everything behaved itself. The display ‘locks in” to all TVs I've
tried it on though, of course, minor adjustments had to be made to suit the differing
overscans of the TVs.

Dr. S.). Abbott

Notes

1 74-123 used because it’s familiar, a’121 would do as well. The spare monostable on
the "123 might always come in handy.

2 Resistances and capacitances fit my 64X 32 Superboard with the resistancesin the
middle of their adjustable ranges.

3 ‘STOP’ can also be connected to pin 10 of U56 to activate (DB) —this tidies up the
screen during sync and delay.

4 Implements very simply on Veroboard.

CEGMON notes

As mentioned elsewhere, last issue’s discussion on firmware has brought concrete
results in the form of our new monitor, CEGMON. Ads will be appearing for it in
various parts of the computing press at the same time as this issue is published, so
there’s not much pointin describing it here — let’s simply say that it does pretty well
everything you asked for, and a lot more besides. Since its documentation went to
press several interesting points have come up, and we therefore give them here.

Access to control and graphics characters

The new keyboard routine allows direct access to control characters and (on OSI
machines only) graphics above 128,,, using the REPEAT key as a second control key.
These do function as expected in the Assembler or in the machine-code monitor —
CTRL-Z does clear the screen, for example. But BASIC normally masks out almost all
characters below 32,,, and all characters above 124,, — typing CTRL-Z in BASIC’s
immediate mode will not clear the screen, although PRINT CHR$(26) will. This is
explained in the CEGMON user notes, in several places; but judging by the number
of phone calls we've received, a fair number of people seem to have fallen for the
old trap of ‘if all else fails, read the instructions’! :

The masking is a limitation of BASIC, and not an error in CEGMON! But we have
provided two ways round this: you can either call the keyboard routine (JSR $FD00)
or editor routine (JSR $FABD) via a USR call from BASIC, which will return the key
value without masking; or you can use the ‘unmask’ routine described in the User
Notes, changing the BASIC input vector accordingly. Control characters can then
be entered direct into program lines; but note that cursor home, screen or window
clear and other embedded commands make LISTings a little bizarre! The only
limits are that nulls (the ‘racing car’ graphic) are always masked off, and LINE-FEED
cannot be used as the first character in a line — this is to prevent problems when
loading from tape. Note also that the ‘unmask’ routine must be enabled before
loading a tape with embedded control characters or graphics, or they will be
ignored during LOAD.

When ‘unmask’ is in use, a limited ‘single-key entry’ of some BASIC commands
and functions is available, on all OSI machines and on UK101s with the REPEAT key
wired in. We didn’t actually design this, and didn’t realise that it was possible until
Steve Hanlan of Beaver Systems pointed it out to us — it is a side-effect of accessing
top-bit-set graphics, some of which are decoded by BASIC’s tokenising routine as
being delimiters of certain keywords. Usefully, these are all mnemonic, because of
the way in which BASIC does this — REPEAT-A gives AND, REPEAT-P gives POKE, and so
on. For example:

10 REPEAT-P 546,24
is equivalent to

10 POKE 546,24
and will appear as such when LISTed.

This only works with upper-case alphabetic characters, and then only with some

f them. And not all the BASIC keywords are accessible in this way — BASIC
anslates them as being the first keyword in its table which starts with that letter. The
complete list of ‘single-key’ keywords available is as follows:

AND
CONT
DATA
END
FOR
GOTO
INPUT
LET
MID$
NEXT
ON
POKE
READ
STOP
TAB(— note the bracket!
USR
VAL
WAIT

Memory-fill function in machine-code monitor
The monitor’s ‘move’ function will over-write the code to be moved if the new start
address is between the old start and end addresses; but this can be turned to
advantage in order to fill ablock of memory with either asingle value —such as nulls
or spaces — or a repeating pattern, by deliberately ‘over-writing’” during the move.

For example, to fill the lower half of the Superboard’s screen memory with nulls
(‘racing cars’), use the monitor to type:

D200/20 00 — i.e. enter a null

MD200,D3FE>D201
This copies the first byte into the new start, which happens to be the nextlocation; it
then copies that into the next, which is the new ‘next location’, and so on. Note that
the new start is thus one byte on, and the end of the old block one byte ‘early’;
adjust these accordingly (‘'n’ bytes on and ‘n’ bytes early respectively) if you want to
put a repeating pattern ‘n’ bytes long into a block of memory.

UK101 keyboard

The UK101 standard keyboard is not quite the same as that used on OSI systems:
there is no EsCAPEkey, the REPEAT key is changed into a second BREAK key, and LINE-FEED
is changed into ‘up-arrow’. The loss of the ESCAPE is no real hardship, and can be
wired back in; the same goes for the REPEAT key, especially it the graphics and ‘single-
key entry’ functions are required. But under CEGMON the LINE-FEED key is decoded
as such in all its versions, including UK101. ‘Up-arrow’ is SHIFT-N, as on OSI
systems.

REPEAT-

s<CcHY®WQOZZITTOTMONOX>

Non-standard video systems

Because of the severe limitations of the C1/Superboard standard display, a lot of
people have done ‘home-brew’ improvements, some of them with pretty weird
display formats! If you’ve done that kind of mod, and would like to run your system
under CEGMON, we can get a ‘special’ version blown for you (the User Group’s 32-
by-48 display mod is a ‘standard’ version, by the way). As long as it only involves

11

changes to either the display format, the command characters and/or the keyboard
look-up table, ‘specials’ are quite easy, and will be available for asmallsurcharge —
contact us, or Mutek or your local dealer, for details. Outside of these relatively
simple table changes, any mod becomes a re-assembly job — and since there is just
one byte unused in CEGMON, that will inevitably mean losing some function or
functions, and will be expensive as well. But for those interested, we will be looking
into the possibility of ‘losing’ the disc bootstrap in exchange for a ‘stringy-floppy’
boot — the Exatron system now being available for OSI equipment in the States.

Finally, we hope that those of you who've already bought CEGMON are enjoying
the difference that it makes to their programming; and, in our usual cheeky fashion,
we urge those of you who haven’t got it to go out and buy it, especially as the
machine-code series we’'ll be starting next issue will be making full use of its monitor
facilities!

Velvet Software’s peripheral control unit

a hardware review

This comes as a kit complete with all components. Itis very well documented in that
the instructions are clear, the various diagrams well drawn and legible. There is
however no circuit diagram. The data lines are taken from asocket nextto the ACIA
and partially decoded lines taken from the prototype area using a DIL socket. One
chip (a decoder) has to be wired into the Superboard. The extension board consists
of copper-strip Veroboard in which the strips have to be broken in the appropriate
places. Whilst not difficult this is rather tedious and | think many people would
prefer to pay the extra cost of a PCB. ‘

There was one serious drawback with the kit | received. The pin connections of
the four transistors used to operate the four reed relays were shown as for the
BC212L whereas in fact the transistors supplied were BC212A (although not marked
as such) which had different pin connections. It took a couple of hours of
debugging before it was realised what had happened. The symptoms were the four
relays being switched on irrespective of what was put on the address and data lines.
In addition one of the relays turned out to be defective, but one would not expect
this to be a common fault. Other control lines than those needed to operate the
relays are taken to the extension board so that other peripherals can be connected
to it. However without a circuit diagram it is not possible to know what addresses
could be utilised or what further decoding would be necessary.

I would say that the kit does represent good value for money and is a very useful
addition to the Superboard. | am personally quite satisfied with my purchase.

Michael Slifkin

elvet Software produce the controller kit in a variety of configurations, including
“one with a programmable sound generator — price according to configuration.
Their address is 26 Colesbourne Close, Worcester WR3 9XF; phone 056 885 453.)

12

The ‘garbage collector’ bug

— the problem, and two solutions

It is interesting, but infuriating, that a serious bug still exists uncorrected in the
version of Microsoft’s 6502 BASIC used by OSI and Comp — the ‘garbage collector’
bug that converts everyone’s word-processor into an unusable mess of garbage.
Ohio Scientific, we're told, have no real plans to fix the problem, since ‘the small
benefits are totally out of proportion to the cost of masking new ROMs’; but
CompShop are a little more amenable at the moment, of which more later.

Like most bugs, it’s small, subtle, not often encountered, but almost invariably
fatal to the program concerned. It only occurs when BASIC tries to reshuffle string
arrays to remove redundant ones and ‘invent’ a little more room — hence the term
‘garbage collection’, and hence its fatal effect on word processor programs. The
symptoms are well known: in the middle of handling a string array the program
suddenly ‘hangs’, and the screen seems to ‘pulse’ about once every one and half
seconds. Sometimes, but only sometimes, the system recovers — and then only after

long wait; but even then the contents of the string arrays will usually have been
scrambled into garbage themselves. The same thing happens if the ‘how much free
memory’ function — Y=FRE(0) — is called.

This only happens with string arrays such as A$(1), A$(2), not with simple strings
like A1$ and A2%$; and ittends mostly to happen when string arrays are concatenated
— such as by using A$(X)=A$(X)+B$ to build up astring, since these operations use
up a vast amount of temporary storage space while the string is being built. To
demonstrate what happens, George Chkiantz provided us with this modification of
a routine originally published in Aardvark’s First Book of OSI. Like the fast screen-
clear published in Issue 2, it stores the strings in screen memory rather than in the
normal program workspace; and then shows what happens as a string'is built up.

First, change the string space pointers in immediate-mode (i.e. type in the POKEs
without any line numbers). This can’t be done within a program — it would lose all
its variable and string pointers in the process!

POKE 123,0: POKE 124,209: POKE 133,0: POKE 134,212 (or POKE 134,216 for a 2K
screen-memory display on a C2, C1E or the like).

Then use a progiam to clear the screen, build up a string array (in this case of the
alphabetic characters a to z repeated for each element in the array), and halt
between building each element by calling the keyboard routine, to wait until any
key is pressed.

10 FOR 1=1TO 32:PRINT:NEXT — screen-clear (PRINT CHR$(26) on CEGMON)
20 DIM L$(20)

30 K=64

40 FORI=1TO 26

50 FOR J=1TO K: L$(l)=L%(l) + CHR$(96 +))

60 REM see what happens if you insert Y=FRE(0) here!

70 NEXT)

80 POKE 11,0: POKE 12,253: X=USR(X) - wait until any key pressed to continue‘ !

90 NEXT I
When this program is run, the screen will fill with ‘garbage’ strings from the con-

catenation — the bottom string will be the final correct one. The program will then

13

wait for any key to be pressed, on which it will construct another string as the next
element in the array. This will continue until the string space is full and the strings
being stored meet up with the pointers at the top of the screen. If the garbage
collector (or GC from now on) did its job properly, all the ‘garbage’ would be
cleared as string space ran out, and only the real strings would remain, eventually
causing an ‘OM ERROR’ (out of memory) when they ran into the pointers. In
practice, with the original GC, the routine can only fill the area — it ‘bombs out’ as
soon as the GC is called, either on running out of storage space, or if FRE(0) is called.

That is what goes wrong, and that is the problem with trying to write any kind of
word-processor for the BASIC-in-ROM. Quite simply, it dies. There are a number of
‘fixes” around, such as those published by Elcomp and Aardvark in their respective
First Book of Ohio Scientific and First Book of OSI. Elcomp’s routine does not work
at all, while Aardvark’s BASIC patch (when shorn of its published typing errors!)
only improves the situation rather than resolving it. The only complete solution is to
fix the problem at the machine-code level, of which more anon; but for the
moment, here is the corrected Aardvark routine. As can be seen with the test
program above, it runs a lot longer before expiring — probably good enough for
many applications. -
10 X=PEEK(133):Y =PEEK(134)
20 L=256*Y+X:L=L-262
30 Y=INT(L/256):X=L-256*Y
40 POKE 133,X:POKE 134,Y
50 POKE 11,X:POKE 12,Y
60 PRINT "POKE 11,”;X;”"POKE 12,”;Y
70 PRINT L: A=45383:B=45644
80 K=L:FORI=ATOB
90 IF I<>A+34 THEN 110
100 M=K+146:GOTO 240
110 IF I=A+59 THEN 130
120 M=K+141:GOTO 240
130 IF I=A+67 THEN POKE L,4: GOTO 230
140 IF I<>A+84 THEN 160
150 M=K+209:GOTO 240
160 IF I<>A+137 THEN 180
170 M=K+146:GOTO 240
180 IF I=A+216 THEN POKE L,2:GOTO 230
190 IF I=A+217 THEN POKE L,24:GOTO 230
200 IF I<>A+261 THEN 220
210 M=K+4:GOTO 240
220 X=PEEK(1):POKE L,X
230 L=L+1:NEXT:PRINT “Location”:END
240 Y=INT(M/256):X=M-256*Y
250 POKE L,Y:POKE L-1,X
260 GOTO 230

Using an external ‘patch” may work well enough in some cases, but it still isn’t good

“ enough for many others. The problem really needs to be resolved at the machine-

code level, in the BASIC ROMs — in BASIC3, to be precise. Dick Stibbons, one of

14

e e T

our members, has been through the ‘garbage collector’ routine with very carefully
indeed, not just identifying where the bug is and why, but providing a complete
(and also shorter!) solution as well. The following are his notes on the problem and
its solution.

The complete Garbage Collector (GC) routine at $B747 to $B24C will move one
string at each pass as follows:

Reset the $87, 82 pointer to be equal to the $85, 86 pointer, thus making all
memory available.

Using these two pointers to define a window, search every current string pointer
pointing within this area and find the one with the highest value.

Move that string to the top of memory (the only string it can over-write is itself).

Loop to find the next-highest string and repeat.

When no pointers remain within the window which is left, the routine is
complete.

The routine has two distinct parts:

1 Find the next string to move.

2 Move it and update the pointers.

There are three types of string which need to be checked. These are as follows:
1 The Descriptor Stack

BASIC waits until it has used up the last byte of free memory before calling the GC
routine. This means that it almost certain to be part-way through creating a new
string. After garbage collection, it continues from where it left off, and finishes the
string, so steps must be taken to ensure that garbage collection preserves the
substrings which were being worked on and updates their pointers.

These are defined in the descriptor stack, nine bytes in page-0 from $0068-71,
divided into three groups of three, each capable of defining asubstring in the form:
length; address low; address high.

The number of descriptors in use (three maximum) is indicated by the descriptor
stack pointer at $0065. which contains:

68 0 descriptors

6B 1 descriptor

6E 2 descriptors

71 3 descriptors — note the intervals of three.

2 String Variables

The definitions of these start at the address pointed to by $7B, 7C. Every variable —
string or numeric — is defined in six bytes [see Issue 2— Ed.]. If itis astring, the form
is:

Name (first letter, in ASCII)

Name (second letter, in ASCII, with bit 7 set to denote ‘string’)

Length of the string

Pointer, low byte (low of actual address of string)

Pointer, high byte

Null

AU hH WN =

15

User Group Notes

Contacts

Last issue we commented that several members wanted the ‘club’ aspect of the
Group developed, for informal sub-groups and meetings. We asked for people who
were interested to send in their names and addresses; here are those who’ve put
themselves forward so far.

David Webster, 99 Edmondstown Road, Edmondstown, Rhondda, S. #/ales. Phone
(work): Caerphilly 885911, Ext.30.
Dick Stibbons, 3 Mansfield Drive, Hayes, Middx. UB4 8DZ. Phone. 01-848 9926.

David Cannon, 91 Glenfield Frith Drive, Glenfield, Leicester LE3 8PU. Phone: 0533
871140.

Kevin Johns, 77 Feeches Road, Prittlewell, Southend-on-Sea, Essex SS2 6TE. Phone
(work): Southend 49431 Ext.434.

Kirklees Computer Club: meets every Monday at 7.30pm in The White Swan, 14
Kirkgate, Huddersfield — about a dozen of its members have Superboards.

Eric Wilson of ACS Cleaning Services, at 1 Raglan Court, 31 Balaclava Road, Bitterne,
Southampton (phone: 0703 464611), would like any experienced members in the
Hampshire area who would be interested in working on a fairly large data-matching
preject to get in touch with him.

Member lan Wales has some equipment for sale — the old type 400 series system,
consisting of 400 CPU board, 440B video (with colour), two 420B 4K RAM boards,
and the associated documentation. He’s at Koenigsbergerstr. 10, 6107 Reinheim,
Odenwald 1, West Germany; but he’ll be back in the UK for a week at the end of
October, and could bring them with him then.

Finally, we’ve all noticed the dearth of women in the computing field generally, so
this note from Veronica Leach seemed particularly apposite:

“One thing puzzles me, there don’t seem to be many women into home
computing. Friends at work regard me as strange, and consider that, on the whole,
the money would be better spent on a Kenwood food mixer. This seems to be an
awful shame, since I realised that you don’t have to be a whiz at maths in order to do
programming. | have become rather computer orientated; my job for instance
would be a cinch. . .for every bus operator who wants to take another bus on his
licence | have to check four different books and refer to two card indexes. This takes
ages, and moves me in about ten points of the compass each time — Bah! Even the
engineers (mechanical, not electrical) seem impressed. ‘Do you understand this?’
seems to be the favourite question as they thumb through the mags.

“All 1 want now is a T-shirt with PEEK & POKE on. Husband sez he won’tbe seenin
the streets with me if | do, ‘what about RAM & ROM?’. No way!”

|
|
i

R

MASTER

PACK PACK

UTILITIES PACK for

evuwor TRSBOLevelll ezl
0 OMPUKI

iscreeoma) COMPUKITUKION dhosipervas

Sixteen utility programs that will - SC, A

revolutionise your programming SHARP Ml 80 d”dSMmMZWK

Three extra-special games
GUARANTEED to appeal to enthusiasts
who want something a little more thought-
provoking than Space Invaders.

cAslo 50'/502? % SQUARE SOLITAIRE - Solitaire brought
up to date. Unique REPLAY feature

with FULL protection against under/over
poking.

techniques. A1l programs feature
LW lngual screen address system o“lo s“"k AR
lee 1 colum 1 is address 101) E

* Simple and complex graphics created
witn single GOSUb calls ¥ Inputs
displayed at any screen address without

scrolling # Strings displayed at any screen address sives you a siow-motion replay of all your moves, and
witnout scrolling # Full page of strings displayed by allows you to resume play at any point, helping you
defining just one variable ¥ TEXTRA text display - a full to develop winning strategy. Incredible qrapmcs

screenful of text displayea direct from the keyboard

#* uraphics vesign Toolkit - 'Graphics Underlay' and #* NINE-IN-A-LINE - The age-old game of Reverse with new and
‘Screen Address Indicator' to speed your graphics design challenging variations to keep you engrossed for hours.

#* Precision Random Numver Generator - a great improvement
on Microsoft's RNU # Instant clear and fill screen and
other invaluable routines ¥ Modular design to minimise
A1 needed (full pack 1300 bytes - 500 - 600 bytes in
t,pical avplications) # Written entirely in BASIC for easy

% EXECUTIVE JIGSAW - An entirely new game that's as
frustrating as it is fascinating. Use your skill to
exactly fill the jiosaw frame. Great fun (even if you
don't like ordinary jigsaws).

customisation ¥ Comprehensive operating instr uctions and Otner leading software publ\shers would probably ask
demonstration program. £8-£12 for just one of these 'Rolls-Royce' games. But
Our best-selling UK101/SUPERBUARD program pack! PREMIER's value-for-money price is only £12.95 for all
AUW DALY £14.9% including VAT THREE, and that includes VAT.
TOORDER: 1i0, the witivate demonstration of program OVERSEAS: Please deduct VAT (divide price by 1.15) and add
wality - in your own nome on your own computer, with tne postage for 200 grams weight IR send two Internah(_)na]
security of our 10-day money-back guarantee of satisfaction Reply Coupons for quotation/program details.
Un: Just send cneque/P0 to include 50y to cover post, Orders normally despatched within five working days
packing and insurance. PLEASE SPECIFY YOUR COMPUTER WHEN ORDERING
PREMIER software is available ONLY direct from PREMIER PUBLICATIONS
We will be pleased to send you details of our software range for your computer - phone or write today

trom Premier Publications

12Kingscote Road Addiscombe Croydon Surrey Telephone 01656 6156
Britain's biggest hobby software specialist-over 90000 programs sold o date!

Dealer Notes

Again a collection of new dealers (new to us, at any rate!), plus afew comments from
others on new items and other things they are doing.

Northern Micro, 29 Moorcroft Park Drive, New Mill, Huddersfield.
Tel: Holmfirth (0484 89) 2062.

“We are a small concern who began trading on 15th September, offering the Super-
board with various modifications and add-ons, such as the 48X32 Superboard, an
upgrading service for existing models, and also a kit which will include a “fix it’
service for those who experience difficulty. We are hardware based and as a result
we are only offering a few programs for sale, most of which are in machine-code;
these include a Space Invaders program in 31K and a Extended Monitor which
displays 120 bytes on screen, etc. We expect to sell mainly to private individuals and
we therefore intend to have a technician available during the evening and at
weekends to answer queries and give demonstrations, as this is when most people
are wanting service.”

Premier Publications, 12 Kingscote Road, Addiscombe, Croydon.
Tel: 01-656 6156.
“Premier Publications, Britain’s biggest hobby software specialist, has a rapidly
expanding range of high quality software for the Ohio Superboard and Compukit
UK101. To continue this expansion programme, we are urgently seeking freelance
part-time programmers to join us. We pay generous royalties, and Premier
marketing assures you of a wide market for your programs. We are interested in
hearing from programmers of ready-written software for sale, and from program-
mers who would prefer to write software based on ideas and program briefs
provided by us. Fluency in BASIC or machine-code is assumed, but all programmers
receive advice on ‘house style’ and standard subroutines. For details please write,
or preferably telephone, to the above address and/or phone number above.”
See Premier’s ad elsewhere in this issue for more details about them and their
current range of software.

Ing. W. Hofacker GmbH, 8 Mtinchen 75, Postfach 437, West Germany.
Tel: 08024/7331.

Hofacker are the European distributors of the American group Elcomp —software,
hardware add-ons, books and technical notes for OSI and also for Pet and TRS-80 —
under the Elcomp and Silver Spur trade-names. Winfried Hofacker let us use part of
his stand at the recent PCW Show, and had avery good range there, including useful
items like an eight-way joystick (i.e. with vertical and rotary movement); we’ll be
reviewing Elcomp’s First and Second Book of Ohio Scientific in the next issue.

) E D Ltd, 15 Ashgrove, Springhead, Oldham, Lancs. Tel: 061 652 1604.

Our member David Hardman rang up to suggest a number of offers his firm could
make for other members. They deal mostly in printers and printer mechanisms: for
example a 21-column (27,” standard paper) mechanism, without electronics, for

1

e i e

‘ £44; and an 80-column, 7-needle, sprocket-fed mechanism for about £160, depend-
ing on the number of orders. Anadex and Epson heads at considerably less than the
‘official’ price (new, or will recondition your existing printer head). Also metal case
for Superboard/UK101, available with choice of three different heights of lift-off

top, starting at £23 for the low-line version.

Planning cards

Arcomplete range of planning and programming cards and pads for users of OSI|
and UK101 systems.
BASIC [0 machine-code [J video charts [opcodes [J graphics

ASCII character set N
R W A S S e
l—--
Number base conversions b
Decimal — hexadecimal — binary to 65535,, - 3
cowywrereyeyeser. o] [
) - LEE R
| v |4 om 5 s (3 |2
i 6502 opcodes L ol 1o i H
| T | IO 5
Cp flpr
Challenger graphics character set N ‘ X '_: §
IX)NXwubmdie T2 ¢am N A EE R T
SN A (CE S AF
Verson, . sl : |
Programmer D6 - 5 Ao C e A
i ’ e e o R
TUne [ader [wicode bl [souce Code [commens | 'o” v | H
——t I I IS P | PO | A §
. : [[IS | PO L
== - ! 1 e P'.' ",;"” :
- { 1 Il 2 *
o ! | | fan) .
- | ‘ |) ;
= I]t N | i
! “ - ! i
~ . ro b ;
- I SN
, [| \
; | o T TEeT
! I €
I | = ¥
: e
I e ||
| | o
I f >
f 1
| | . s
E | Zen Computer Services, 71 Manor Avenue, Sale, Cheshire M33 5)Q.
b 1 ‘ Tel: 061 962 3251.
Produces a variety of hardware items for OSI equipment, including a very useful

own version of OSI’s 620 board backplane unit (see photo). This is a six-slot 48-line

backplane for OSl’s big-system boards, with a 40-pin DIL header for the
'_ Superboard/C1 or UK101 expansion socket — allowing you to use the 470 floppy-

controller for 8” floppies on a Superboard, for example. The backplane/expansion
interface set is £43.70 ex-stock, built and tested. Also available are a ‘50Hz’
conversion kit (£5) and a useful OSI-to-Acorn adaptor (£3).

‘ v

Available to User Group members at the ‘trade rate’ of £1.50 for 100-sheet pads,
50p for laminated cards.
For further details and complete list of pads and cards, contact Wordsmiths at
19a West End, Street, Somerset BA16 0LQ.

CEGMON

‘the best thing for OSI systems since OSl itself’

CEGMON isa new monitor PROM for all Ohio Scientific and UK101 BASIC-in-ROM
systems. Written by the organisers of the OSI UK User Group, with the user’s needs
in mind, CEGMON gives you the kind of firmware supportyou need to get the most
out of your system, and gives your computer more features and flexibility than
anything in its price range. For example:

O a screen editor for use with BASIC or Assembler programs, linked directly to the
system’s calls for keyboard input; allows copying and alteration of text or
program lines from anywhere on the screen.

O a revised keyboard routine, giving typewriter-like response, true ASCII key-
values and direct access to most graphics.

O a completely new screen handler — output to the screen is via user-definable
‘windows', easily programmed to allow free mixing of text and graphics, protec-
ted non-scrolling areas, and multiple scrolling and non-scrolling zones. Cursor-
controls and separate ‘window’- and screen-clear commands are also included;
text i5 printed from the top of the current ‘window’.

O full machine-code monitor, co-resident with BASIC and Assembler. Includes
machine-code load and save in auto-start format; memory modify allows input
of text and graphics as well as hexadecimal instructions; tabular display of
memory contents in hexadecimal; memory block move/copy; and breakpoint

handler for debugging programs. Most subroutines are available for use in
your own programs.

O disc bootstrap — OSI-compatible floppy-disc bootstrap available on all versions.

n) iqpul and output from BASIC or Assembler vectored through RAM, allowing
direct linkage to user-defined 1/0 routines.

O compatible desigq — designed for the maximum practicable compatibility with
tl|1e standard monitor, CEGMON will run your existing software with little or no
alteration.

All this packed into a single replacement PROM! Five versions of CEGMON are
available:

C1 — standard OSI Superboard or C1.

C1E — 32 <48 display Superboard/C1, C2-type keyboard scan (Mutek conversion).

CT1U — 3248 display Superboard, C1 or UK101, standard (invert) keyboard scan.
UK107 — standard 16 <48 display UK101.

C2— OSI C2and C4systems (requires small hardware mod to address full 2K ROM).

Price: £29.50 (excluding VAT) includes full documentation with program examples
and reference card.

Further details from UK distributor: Mutek, Quarry Hill, Box, Wilts. Tel: Bath (0225) 743289

.

»

®

More details from Easicomp of Norfolk and Beaver Systems of Thame:

Easicomp, 57 Parana Court, Sprowston, Norwich. Tel: 0508 46484.

Mentioned in last issue, but we've had a bundle of leaflets from them since then.
They do their own ‘cased Superboard’, called the ‘Easicomp Companion’; a variety
of software and other assorted items like the Microcase; and also an interesting-
looking programmable sound-generator board for Superboard/C1 and UK101.

Beaver Systems, Norlett House, Dormer Road, Thame, Oxon OX9 3UC.

Tel: Thame (084 421) 5020.

Sells the full ‘personal” OSI range — Superboard to C8P — and also the Mutek-type
‘enhanced’ C1, the C1E; but specialises in software, partly bought-in (from OSI,
Aardvark and others), partly their own publication (thgy will publish any good
software for OSI/UK101 kit), and partly their own productions —including the most
amazing version of Life that I've seen yet, and a very neat set of utilities. Steve Hanlan
very kindly allowed us to use part of his stand at the PCW Show to demonstrate our
new monitor — many thanks.

The arrival of CEGMON
We're pleased to say that our new Monitor EPROM for OSI BASIC-in-ROM systems
and the UK101 is now ready. (The name CEGMON is based on our initials, but don’t
let that put you off!). We've included as many of your suggestions and requests as
we could, but we couldn’t put all of them into a 2K ROM, of course! That’s why you
won’t find a ‘named file’ cassette handler on board, for example — to do the job
properly would have taken an inordinate amount of space — and neither is there a
‘data save and load’ system because, once again, it takes a lot of space to doit (and in
fact the best way to handle data files is in BASIC itself, where it only takes a couple of
lines!). What you will find, however, are a range of useful functions which make
your machine far more flexible than before, yet without losing compatibility with
existing software. You’ll find full details in the ads in Practical Computing and
elsewhere; but briefly we’ve included an improved version of the Sirius Cybernetics
screen editor; arevised keyboard routine that ends the ludicrous juggling-act with
the Shift-keys for lower-case, with proper decode for Return, Line-feed, Escape and
Rubout (which now does whatitsays on OSI systems!), and using the Repeat key (on
OSl systems only) as a second control to access graphics; a new fully-programmable
screen-handler like that on the new Super-PET, with screen-clear, ‘window’-clear
and cursor controls; expansion of the machine-code monitor to include not just
machine-code save (also compatible with the Assembler - at last!), but virtually all of
the OSI Extended Monitor (bar disassembler or search) as well. We’ve not only
retained the disc bootstrap for the Superboard/C1 and UK101, but added one for
the C2/C4 series, which also now have the former systems’ user-definable input-
output vectors. We had to use some of the old ‘free RAM’ in page-2, from $0222-
0234, for the editor’s and screen-handler’s stores and tables; but these can be
disabled with a single POKE, to allow existing machine-code routines starting at
222 to run. We’ve been very careful about compatibility: almost all of the former
routines’ start points have been retained, and the editor and Monitor both work
happily with either BASIC or Assembler.

Vil

At about £34 after the dreaded 15%, CEGMON isn’t particul ‘ D 3 Arrays
there ain’t no User Group discount!); but there’s an aw?lfl |o?;na:Lye$:f;%t(?Sg ?}?é : The definitions start at the address pointed to by $7D, 7E. Each string array definition
firmware, but a decent bit of documentation for it as well — 20 pages plus a has the form:
reference card. Main distributors are Mutek, at Quarry Hill, Box, Wilts; other 1 Name (first letter)
dealers such as Premier Publications and Beaver Systems should also have it by the 2 Name (second letter, with bit 7 set)
time you get this Newsletter. 3and 4 Length of pointer block, including definition section

5 Number of dimensions
CEGMON and WP-6502 word-processor 6 Null
CEGMON is, as far as we know, happily compatible with BASIC, the Assembler and 7 Size of last dimension
ExMon. The other major software package which a lot of people now have is the 8 Null
i WP-6502 word-processor from ‘those Chinese guys’, Dwo Quong Fok Lok Sow — 9 Size of penultimate dimension
‘ which will run under CEGMON, but only with the new screen-handler and editor 10 Null

scramble it, and its contents W{“ hav.e to be restored each time. Steve Hanlan of The distance between the ‘initial letter’ byte and the start of the element pointers
Beaver Systems has been discussing this with DQFLS, and they are willing to produce themselves is given by (N*2)+5, where N is the number of dimensions (see $B1B7,
a new version of WP-6502 which will not only resolve the BREAK problem but B1B8). ’

should use some of CEGMON’s editing and screen facilities as well as the improved The element pointers have three bytes each, again in the form: length; address
keyboard. This v_viH _involve a re'-assembly of the source code, but Steve reckons it low, address high. Importantly, there is a null ’between each element p(;inter.
should be here in time for Christmas. So, back to the garbage collector itself. Part 1is built round a subroutine, $871D17-
B215, which examines any one string and decides whether it qualifies for a move.
The tests are:

$B1D4 s this variable a string? (Variables only).
$B1D9 s its length >0?
$BT1E4 Is it in the area currently defined as free memory?
$BTEE s its pointer higher than any one checked so far?
If all the answers are ‘yes’, the ‘core’ of the subroutine is reached ($B71F6-B205) and
the string position is recorded in $AA, AB; its pointer position in $9C, 9D; and a
number to indicate its type in $A2.

This subroutine is called from three areas in the program, each devoted to a

3 particular type of string. In each case, a working pointer ($77, 72) is set up for it,and

f ‘ 9 the increment between pointers is stored in $A0.
T) ‘

disabled. Its main jump-table is stored at $0222 onwards, so that hitting BREAK will ‘ l — and so on until the first dimension of the array is reached.

I
1

The subroutine is called from within a loop and itself increments the pointer,
ready for the next call. Itis the duty of the calling routine to check when all strings, of
the type in which it deals, have been examined. String types are checked in the
order Descriptors, Variables, Arrays, and the increment for each case is 3, 6, 4.

The principal bug in the existing routine is that the increment given for arrays is
not 4, but 3 ($B188). The search thus attempts to treat spurious bytes as pointers, and
crashes. [The ‘glitch’ on the screen every one-and-a-half seconds is this confused
search running through the screen memory each time round its loop — Ed.]
Changing the increment to four does solve this problem, but creates two more in
the process!

When all the strings have been checked, the routine then jumps to Part 2, $8797,
the ‘move’ routine. The first tests to see if a string qualified for a move during the
search. If not (i.e. $9D=0), garbage collection is complete, and it branches back to

ick up the RTS at $B2175.

There then follows some arithmeticto calculate the distance between the pointer
pointer ($9C, 9D), and the ‘Length’ byte of the string definition. The figures (which

Vil 16

arise purely because of ine way the search routine is set up) need to be: ‘ " b) Used for the move routine to point at the byte at which the newly-moved string
Descriptors 0) will end ($A1D6 works backwards).
Variables 2

A6, A7 Used by the move routine to point to the end of the string in its old
osition.

25 Pointer to the string-building descriptor block of the highest order in use at the
time the GC routine was called.

68, 69, 6A; 6B, 6C, 6D; 6F, 6F, 70 3-level descriptor stack used in building strings.
Each triplet may contain a string definition, in the form: length, low address, high
address. All three need to be included in the garbage collection in case they define
substrings which were being assembled at the instant the GC routine was called.
A1D6 subroutine Moves a block of memory, $AA, AB - A6, A7 to a new area,
; ending at $A4, A5. Returns with X=0and Y=0and $A4, A5 pointing to the byte which
. would have been used next (but note that $A5 is one less than its true value).

The decision to call the GC routine is made in the ‘string space check’ subroutine at
$A27F. The ‘OM ERROR’ caller is at the end ($A24C) and this runs on into the Warm-
Start location, $A274. $A21F is called from:

A1CF ‘Record string’ routine (latter part, from $A1D6 on, is used by GC itself).
AE8D ‘Build array’ routine (called twice, at $AEA4 and $AEF3).

BD11 ‘Cold-Start’ calls $A27F for ‘Memory Size’ check ($BE09).

The GC is also called direct by the STR$ function at $873D and the FRE function at
$AFAD.

Also interesting (but irrelevant) is the fact that the ‘string temporaries’ handling at
$BOAF has a ‘number of orders’ test at $BEOF, and the ‘ST ERROR’ caller is at $B0F 3.

Arrays 0

and will be stored in $A2. The original system noted the increment value in the
subroutine ‘core’ ($A0-A2) and used this to work out the new increment — fine if
there are only two possible primary increments, 6 and 3; but there are now three: 6,
3 and 4. Easy if you've got bytes to spare — but we haven'’t.

On the other hand, the set-up implies some redundancy. If we found the string to
know it needs moving, how come we need more arithmetic to work out how to
move it? Looking back into the core of the routine, we find that Y will be 2 for
descriptors and arrays, and 4 for variables. Decrement it twice and store itin $A2 and
we have the new increments for later use in one easy move — and no extra bytes!

In fact, we can now scrap all of $B27C-B223 and replace it with just one ‘clear
carry’. Is that it? Well, nearly.

At the entry to the whole routine ($B747), $A0is expected to be 3 (set by the ‘Cold
Start’ procedure at $8D62) and the old garbage collector leaves it at 3. We’'ve now
changed it to 4, so instead of crashing at the array search, we crash at the descriptor
search instead! However, we now have bytes to play with, so a DEC $A0 before we
leave the routine ($B216) leaves everything perfect — honest!

A final tidy-up is to ditch a bit of assembler inefficiency at $B75D (Y is already 0 and
X doesn’t matter), and shuffle everything up. We now have a garbage collector that
not only works, but uses 15 cycles — and 5 bytes — fewer.

Addresses used
7B, 7C Start of variables
7D, 7E Start of arrays

Descriptors
7F, 80 Start of free memory B147 A685 LDX $85 ; initial entry
81, 82 Start of strings B149 A586 LDA $86)
85, 86 End of memory B14B 8681 STX $81 ; re-entry for further passes (update string-space ptr)
’ s . . . ; 2 s B14D 8582 STA $82
71, 72 Working pointer to find the various string definitions . B14F A000 LDY 0$00 ; becomes a flag for ‘GC complete’ (see B21A)
9C, 9D Pointer to the old pointer. 9D also serves as a flag: a search completed ‘ B151 849D STY $9D
without any qualifying strings being found leaves 0 in $9D. . ' . B153 AS57F LDA $7F)
A0 Contents are the increment between the pointer to one string pointer and the B155 A680 LDX $80 . 5
next. All the bugs live here! B157 85AA STA $AA : becomes ‘bottom of string space’ pointer
F i — B159 86AB STX $AB
Fg: gtc:isrfnr\)/taorir t[;IIOCk,—63 (0(; ijhOUId) B15B A968 LDA 0$68 ; to search descriptor block
ing ables, =6 (and does) B15D 8571 STA $71 ; (minor change — see notes above)
For string arrays, =4 (not 3!) B15F 8472 STY $72
A2 Used to determine which type of string is about to be moved ($B27C). The final B161 C565 CMP $65 ; descriptor stack pointer
! P p
contents are the distance between the 71, 72 pointer and the ‘string length’ byte in B163 F005 BEQ $B16A))
the string definition. B165 20D7B1 JSR $B1D7 ; ‘test this string’ subroutine
For descriptor block, =0 B168 FOF7 BEQ $B161 ; always branch
For string variables, =2 Variables
For string arrays, =0 B16A A906 LDASDSOG ; search increment
AA, AB Used to record the ‘highest pointer so far’. Left pointing to the string to be B16C 85A0 STA $A0 .
moved and used as such by the $A1D6 ‘move’ routine. B16E A57B LDA $7B ; set up search pointer

B170 A67C LDX $7C
B172 8571 STA $71
B174 8672 STX $72

A4, A5 a) Used to point to the end of the block under examination (variables and
arrays only);

17

B176
B178
B17A
B17C
B17E
B181

B183
B185
B187
B189
B18B
R18D
bigF

B191

B193
B195
B197

B19A
B19C
B19E
B1A0
B1A2
B1A3
B1A4
B1A6
B1A8
B1AA
B1AB
B1AD
B1AF
B1B1
B1B2
B1B4
B1B5
B1B7
B1B8
B1BA
B1BC
B1BE
B1CO
B1C2
B1C4
B1C6
B1C8
B1CA
B1CC
B1CF

B1D1
B1D2
B1D4
B1D6
B1D7

19

E47E
D004
C57D
F005
20D1B1
FOF3

85A4
86A5
A904
85A0
A5A4
AB6A5
E480
D007
C57F
D003
4C16B2

8571
8672
A001
B171
08
Cc8
B171
65A4
85A4
C8
B171
65A5
85A5
28
10D7
Cc8
B171
0A
6905
6571
8571
9002
E672
A672
E4A5
D004
C5A4
FOC3
20D7B1
FOF3

Cc8
B171
1030
C8
B171

CPX $7E
BNE $B17E
CMP $7D
BEQ $B183
JSR $B1D1
BEQ $B176

STA $A4
STX $A5
LDA 0%$04
STA $A0
LDA $A4
LDX $A5
CPX $80
BNE $B19A
CMP $7F
BNE $B19A
JMP $B216

STA $71
STX $72
LDY 0$01
LDA (71),Y
PHP

INY

LDA (71),Y
ADC $A4
STA $A4
INY

LDA (71),Y
ADC $A5
STA $A5
PLP

BPL $B18B
INY

LDA (71),Y
ASL A
ADC 0$05
ADC $71
STA $71
BCC $B1C2
INC $72
LDX $72
CPX $A5
BNE $B1CC
CMP $A4
BEQ $B18F
JSR $B1D7
BEQ $B1C4

INY
LDA (71),Y
BPL $B206
INY
LDA (71),Y

; ‘have allvariables been searched? (If yes, go to B183) '

; earlier entry checks ‘is this a $ variable?’
; always branch

Arrays
; (71,72) will be left pointing to
; first array block — store here
; search increment — change, see notes above

; = start of arrays

; any (more) arrays?

; exit point for Part 1— highest $ will have been found
(all have been checked by here)
; set pointer for array search

; = ‘¢ or numeric’ byte
; i.e. push value of top bit, for ‘$ or numeric’

; = ‘length of array block’, low byte

; = ditto, high byte
; (A4,A5) now pointing to start of next array block

; if plus, this array is numeric — branch to look at next

; = ‘no. of dimensions’ byte
; X2 +5 gives position of first array element
; (LEN$ byte)

; update search pointer to point to it

; ‘finished this array pointer block?’

; ‘test this string’ subroutine
; always branch

‘Test this string’ subroutine
; entry for variables
; is it a string variable?
; branch if not

; (entry for others) is LEN$ =0?

¢

'S

v

B1D9
B1DB
B1DB
B1DC
B1DE
B1DF
B1EO
B1E2
B1E4
B1E6
B1E8
B1EA
B1EC
B1EE
B1FO
B1F2
B1F4

B1F6
B1F8
B1FA
B1FC
B1FE
B200
B202
B203
B204
B206
B208
B209
B20B
B20D
B20F
B211
B213
B215

B216
B218
B21A
B21C
B21E
B21F
B221
B223
B225
B227
B229
B22B
B22D
B22F
B231
B233
B236

F02B
INY
Cc8
B171
AA
C8
B171
C582

DO1E
E481
BO1A
C5AB
9016
D004
E4AA
9010

86AA
85AB
A571
A672
859C
869D

84A2
A5A0
18
6571
8571
9002
E672
Ab672
A000
60

C6A0
A69D
FOF5
A4A2
18
B19C
65AA
85A6
A5AB
6900
85A7
A581
A682
85A4
86A5
20D6A1
A4A2

BEQ $B206

INY
LDA (71),Y
TAX

INY

LDA (71),Y
CMP $82
BCC $B1EC
BNE $B206
CPX $81
BCS $B206
CMP $AB
BCC $B206
BNE $B1F6
CPX $AA
BCC $B206

STX $AA
STA $AB
LDA $71
LDX $72
STA $9C
STX $9D
DEY

DEY

STY $A2
LDA $A0
CLC
ADC $71
STA $71
BCC $B211
INC $72
LDX $72
LDY 0%$00
RTS

DEC $A0
LDX $9D
BEQ $B211
LDY $A2
CLC

LDA (9C),Y
ADC $AA
STA $A6
LDA $AB
ADC 0$00
STA $A7
LDA $81
LDX $82
STA $A4
STX $A5
JSR $A1D6
LDY $A2

’

branch if yes

; set X, A as pointer to pointer

’

»

; is this $ in ‘free memory”?

branch out if not

; is it the highest checked so far?

branch out if not

Core of string-test subroutine
record string position in $AA, AB

; and pointer position in $9C, 9D

’

»

’

’

’

’

]

1

; set up $A2 for ‘move’ routine — see notes

; regardless of whether this one ‘won’ or not,

increment search pointer ready for the next test

Part 2
ready for next garbage collection — see notes

if $9D still 0 (see $B157) no string has been found

(i.e. garbage collection is finished)
set up Y — see notes

; get LEN$

; (AA, AB) = start of $; +LEN$ = end of $;

store this in (A6, A7)

; copy ‘next free memory location’ into (A4, A5)

; block-moves (AA, AB)-(A6, A7) to new position

ending at (A4, A5) — updates latter

20

B238 C8 INY

B239 A5A4 LDA $A4

B23B 919C STA (9C),Y ; change ‘$ pointer low’ to new value

B23D AA TAX

B23E E6AS INC $A5 ; (increment because of an oddity in $A7D6 routine)
B240 A5A5 LDA $A5

B242 C8 INY

B243 919C STA (9C),Y ; change ‘$ pointer high’ to new value

B245 4C4BB1 JMP $B14B ; and back up to the top for another pass

Changes to the original:

Essential

B187 A904 LDA 0%$04
B189 85A0 STA $A0
B204 88 DEY
B205 88 DEY
B206 84A2 STY $A2
B218 C6A0 DEC $A0
B21A A69D LDX $9D
B21C FOF5 BEQ $B213
B21D EA NOP
B21E EA NOP
B21F EA NOP
B220 18 CLC

Non-essential
B15F 8472 STY $72
B161 EA NOP
B162 EA NOP
Shuffle as required, to lose the five NOPs, then:
B165 20D7B1 JSR $B1D7
B17E 20D1B1 JSR $B1D1
B197 4C16B2 JMP $B216
B1CC 20D7B1 JSR $B1D7

Disc System Notes

What with the ‘specials’ in this issue, we’ve run out of room to include the disc
system notes. We've received two different single-drive copy routines for 65D, a
fairly complete memory map of 65U, and a vast but disorganised and largely
unreadable mass of disc notes from Aardvark’s Aardvark Journal and the semi-
official newsletter Peek-65. To make up for its absence this issue, we will be having
a large Disc System Notes next issue — promise!

In the meantime, if you have any queries on 65D or 65U, or have anything to tell
us (please!), please get in touch with us, and we’ll do what we can!

21

' ‘

O

s

q«

Inexpensive hard-copy

For a relatively small sum (£15-£25) it is possible to purchase ex-GPO teleprinters
which when interfaced to your computer provide a good quality output albeit with
some limitations in speed and the character set. This article briefly describes the
teleprinter operation and details the software and hardware necessary to interface
specifically to a CREED 7B teleprinter and the Challenger C2-4P; however inform-
ation is included for users of C1/Superboard and UK101 machines. Any Baudot
based printer may be used but there may be small variations with the figures-mode
character set which will have to be allowed for. When you obtain a teleprinter it is
worth determining if possible the machine’s operating code. Most use the 5-bit
Baudot code, some have been configured to special codes and if you are really lucky
you may find one ASCII coded.

Teleprinter operation

The Baudot code, being 5 bits long (plus 1 start bit, plus 17, stop bits) only allows 32
(25) combinations of bits with which to convey information. However, in order to
increase the effective character set, two of these combinations are used to define
the mode in which the teleprinter operates, namely ‘letters’ or ‘figures’, which
equate to lower and upper case on a typewriter. This effectively increases the
character set to 60; however, some functions such as line-feed, carriage-return etc.
are duplicated in both modes so the resulting number of characters reduces to 56.
Table 1 list the allocation of the 64 codes. When a teleprinter receives a mode
command, it shifts to that mode and remains mechanically latched in that mode
until it receives the alternative mode command.

Software

The software as listed is located between $0240,, and $02E5 inclusive and uses
location $02FE to temporarily store the contents of the ‘X’ register and $02FF to
memorise the teleprinter mode. This area of RAM is not used by BASIC and is not
overwritten when the machine is reset/cold-started. The program however may be
located anywhere in RAM and has been written using relative branches so that the
opcodes may be copied directly (with one exception) into any other area of RAM or
even placed in ROM, but $02FE-02FF will still be used as scratchpad locations. The
exception is at $0250 in the source code: LDA $0287,X will need to be changed to
LDA equivalent X as necessary. If it is more convenient to the user, $02FE-02FF may
be redefined by changing the lines in the source listing that are marked with an
asterisk.

The program ($0240-02A7) is written as a subroutine and expects to find an ASCII
character code in the accumulator (A register). $0240 simply calls the CRT driver
routine in BASIC and displays the character on the VDU. The remainder of the
program undertakes the ASCII to Baudot conversion by checking code limits and
outputing a space if outside these limits, looking up the code to be output (from
table $02A8-02E5), checking for and outputing if appropriate the teleprinter mode
and finally outputing the Baudot mode.

The look-up table needs some explanation. The program takes in the character
code in the Accumulator and eventually places it in the ‘X’ register. This value,
which is restricted by earlier checks to the range 27,,-5F,, determines which
location in the table relative to the base address $0287 is to be loaded into the

22

‘ 4 ‘ Accumulator. The values given in the table are such that bits 0-4 give the Baudot
code to be ultimately output and bit 7 indicates the mode in which the teleprinter

g Table 1 , must be in order to receive the code. Bit 7 set to ‘1" indicates figures mode, and bit 7
Baudot Letters Mode Figures M : : set to ‘0’ indicates letters mode.
.value gures Mode Alterni‘tl;f’eﬁgures } The look-up table is listed for use with a CREED 7B fitted with a normal character
in Hex Character ~ ASCIl Character ASCIl Character ASCII 1 set, therefore when any characters occur within the range 21,5-5F which do not
00 NUL 00 UL 00 normally appear in the CREED set, a space is output. Table 1 however gigo lists my
01 E 45 3 s NUL 00 proposals for an alternative figures-mode set. This is based on my opinion of the
02 LF 0A 0 oA 3 33 most wanted characters for BASIC or machine code working and utilises codes not
03 A 41 N 2D LF 0A normally associated with characters. More on this later. '
04 SPACE 20 ACt po - 2D The program as listed is for the C2-4P under the standard OSI monitor; two
05 S 53) = SPALE 20 changes may have to be made to run on different machines and/or under different
06 I 49 8 28 22 ‘ ‘ ‘ monitors. For all C1, Superboard and UK101 systems the serial output subroutine is
07 U 55 7 37 : 38 at $FC§1, so the cal!s at $0273, 0288, 028F and $02A0 should read JSR $FCB1. Under
08 CR oD . oD 7 37 Comp’s New Monitor for the UK101 the CRT call at $0240 should be JSR $FA57;
09 D 4 WHOAREYOUR N/ CR 0D under all versions of CEGMON the CRT call may be unchanged or (for the new
0A (N/A) $ 24 : screen handler) changed to JSR $F836.
R 52 4 34 4 34
0B J 4A BELL 07 * 2A
e F 46 % 25 ; 3B R15 L.FKR
OF C 43 : 3A : 3A
ol K 4B (28 (28 ¢
i T 54 5 35 5 35 RI6 K2
1 z 5A + 28 + 28 ; Tox nt Bl I
12 L 4C * A 3
1 w) 29) 23 = DK for 1D basid Flus P
14 H A : 2 % b R= 33K for S bundk g NESSH
15 Y 59 6 36 6 gg Suitch closed = 3D® [y - 6
16 P 50 0 30 0 30 Sk z 5
17 Q 51 1 31 1 31 i 1 0.01,F
:g S 4F 9 39 9 39 . ‘ ‘ % ;];
3 ‘
1A G g é 431(1; z 33é Figure 1: Modifigation of baud rate. whm 012 7
1B (Figures) (Figures) (Figures) 300 baud with switch closed; 50/110 baud (dependent on resistor value) with switch
1C M 4D . 2F 2F open.
1D X 58 / 2F / 2F
" Y % - b - 3D Hardware
1F (Letters) (Letters) (Letters) Teleprinters such as the CREED 7B operate at 50 baud whilst the computer normally
Notes: outputs at 300 baud. The C2/C4 serial output #an be easily modified to output at 50
' baud by the addition of two resistors and a switch to select 300 or 50 baud operation

;O Character Baudot value location in look-up table determined as ASCIl value - as shown in Figure 1 — the additional components are asterisked. To effect the
hY modification, locate R16 on the circuit board (see computer manual) and unsolder

one end. Lift this end clear of the circuit board, and solder two wires, one to the free
end and one to the pad on the circuit board from where R16 has been disconnected.
Space is limited, so ensure there are no short circuits. The two wires are now routed
to the back panel where a switch is mounted with the two additional resistors on its

2 Va‘lpe in look-up table is Baudot value plus 00 (‘letters-mode’ characters) or plus
80,4 (flgu.r(?s—mode’ characters). ' .
3 Remaining positions in look-up table filled with 04,, (Baudot SPACE).

24

23

25

IOZCEF TSR OFEF ID ASClI-to-Baudot routine . 1
= FHA

“ back. The setting of the 2.2K variable resistor is not critical so initially it may be set at
a) Assembly listing. k its midpoint and adjusted as necessary. It should be noted that this modification also
changes the cassette output frequency, thus the switch is required to allow the
cassette to operate at 300 baud.

To output the datal implemented the transistor RS-232 interface by installing U31,
Q2, R55, R56 and R57 (see Figure 2) and breaking the printed circuit track from pin 2
of U41, otherwise the output of U41 would be in contention with the output from
Q2. It may be necessary to generate a -9V supply to R57, but this depends on the
teleprinter driver circuitry. With the circuit given in Figure 3, a -9V supply is
unnecessary (but acceptable if already fitted), so | connected the -9V rail to earth.
Two points worth stating about Figure 3 are firstly the circuit expects the input
current to be limited by the source, which in this instance is achieved by R56 in
Figure 2; and secondly the opto-isolator on the input may appear to be a bit exotic,
. A .but the back-EMF from the teleprinter coil isseveral hundreds of volts soitis wise to

' ensure this cannot reach the computer.

C1/Superboard and UK101 users can readily implement their equivalent circuits
to Figure 2, however, the cassette clocks for these computers are derived from the
video divider chain. For UK101 users | suggest the use of a 7492 (divide-by-2 and
divide-by-6) integrated circuit as indicated in Figure 4; however, not having any
detailed knowledge of C1/Superboards | cannot make any suggestions, but it is
possible that Figure 4 also applies.

et

DI
COaF
ROFF G2
HEE S
HIO

Q2 IN29PS or BCHEE
Dt ut

o
R55 19K Se 0L

R5? AOK

v —9V o Earth (ec text)

Figure 2: RS-232 interface in computer.

Using the software routine

b) Conversion look-up table. At this point C1/Superboard and UK101 users (and also C2 users of CEGMON) have

. . ' a distinct advantage over standard C2/C4 owners in that their input/output

_— U: ,: :.: Di: pg nil :::E\ g : rci :1; . . ‘)ac.hine-cod'e routines are accessed viavectorsin page 2 of R{’\M.Thustoutilisethe
02BT 37 97 S1 SR 90 95 57 oo am SE o4 utine as written for BASIC and machine code working, their users can switch the
07 1% 0E 0% 01 00 1R 14 06 0B OF computer’s output from the CRT driver to the conversion routine by a POKE 538,64:

OZ0E 1T OR AS 10 07 1E 1T 10 15 11 04 POKE 539,2 — either within a program or in the immediate mode (in which the

26

POKEs must be in one line). All output to the VDU will now be echoed on the
printer. For users of standard C2s all is not lost. The routine can be readily used with
the Extended Monitor by using the built in monitor to change the contents of
locations $0862-0863 in ExMon from EE, FF to 40,4, 02, respectively. To use the
routine with BASIC however, is somewhat more complicated. | had originally
planned to program an EPROM with a revised monitor incorporating the Baudot
routine, however | think the most prudent solution now would be to invest in the
User Group’s new monitor ROM (CEGMON) which does vector BASIC’s support
routines through RAM. In all instances the routine can be initialised by outputing
two characters utilising opposite modes in the teleprinter — this is necessary to
synchronise the mode of the teleprinter with the program.

I will conclude this part of the article with three brief specific points on the tele-
printer. Firstly the alternative characters suggested in Table 7 are not available, but if
you can obtain a spare character set, standard characters can be adapted with a bit of
ingenuity, i.e. ‘9’ changed to ‘;’, ‘K’ adapted to ‘<’, 'Z’ to *>’, ‘S’ to ‘$’, and ‘X’ to X',
although itis possible to obtain a proper ‘*’. Two of my proposed characters use the
‘BELL” and ‘Answer back’ codes — the mechanisms on the printer associated with
these codes will need to be disabled and the new character heads inserted into the
corresponding empty locations in the print head. The second pointis to try to obtain
a printed fitted with a synchronous motor — this minimises timing problems. Finally
I would recommend to anyone investing in a teleprinter to sight a copy of the Radio
Society of Great Britain publication ‘Teleprinter Handbook’. This describes in great
detail the workings of several teleprinter models and also the setting-up tolerances.

+5v]

56V
(s
TIL M1 _{>_ Fa LSP4
s
W «}
Ceurrent e 5 22x0 39
o5 zzcn 2wty 4)
wi . !
[
keyboand. { D 2 M;}Jt 22%kn 1
(Contacts > e | % e Vot ?a'vx
(afrequired] id 1A 340 400 mw

Al resistors ¥3W unless otherwise stated

Figure 3: Teleprinter drive circuit.

1. Keyboard contacts can be wired in as shown if required.

2. Configure teleprinter electromagnet connections so that it is inactive when
computer data output inert.

3. Input current must be limited by source, e.g. R56 in Fig.2.

27

I
6859
TXAUK
RxClK
»
*
TX UK 1 8
163 9 ’ s LS
Fata -
18 10
X Co<

4

Figur; 4: Suggested modification of baud rate for UK101 and possibly C1/Super-
boards.

* Components additional.

e+5 RE2 K
{
7l xe3 s +TX ALK (406850]
F7R N o
- 5 PTX (LK
2] o7 L I3
=3
‘ from 125kHz #1635
ow:1¢59
PIN 12, 4 12
ICSH
6

T

Figure 5: Baud rate generator as fitted in UK101.

Component numbers relate to UK101; C1/Superboard users should be able to read
across.

28

Suggestions for 110 baud Teletype operation (send only)

Hardware modification

C2/C4 computers: Baud rate modification can easily be implemented on these
machines as described earlier, with the addition of the components marked with an
asterisk in Figure 1. The closing/opening of the switch will select 300/110 baud
operation respectively. The 2.2K linear preset should initially be set at a value of
1.77K using an ohmmeter or by eye approximately ¥, travel from end ‘A’ in Figure 1.
It can then be adjusted if teletype operation is found unreliable. The baud range
achievable is approximately 107 to 120 with this value of preset.

UK107 and C1/Superboard computers: On these machines the baud rate is derived
from the video divider chain culminating with the circuit shown in Figure 5. The
component numbers relate to the UK101, but hopefully C1/Superboard users can
read across. Users of these machines now have two choices open to them, either to
build a tidied-up version of Figure 7 and implement it as shown in Figure 6, or
implement the circuit shown in Figure 7. Figure 6 would need setting up as for
C2/C4 computers, whereas Figure 7 — being derived ultimately from a crystal
oscillator — needs no setting up, but will run slightly slow at 108.5 baud and will
involve cutting a number of tracks on the circuit board.

+5
« || Lo
g 7 8j4s ¢
+*
68K o | NESss
5
10K oy
%_1_ =08
0.0224F * 77
POLYARBONAR
0 be
IC63
1 18

13

Figure 6: Proposal for 110 baud on UK101.

1. *Components additional.

2. 10K-ohm preset should be set at approximately mid-travel and then adjusted as
necessary.

3. Similar modifications apply to C1/Superboards.

4. Remaining connections on 1C63 unchanged.

Most teletypes operate with a word formatted with 1 start bit, 8 bits of information
and 2 stop bits. All C1/Superboard, C2/C4 and UK101 systems set their ACIA to this
condition on start-up (C2/C4systems, and also UK101s under Comp’s New Monitor,
enable receive and transmit of interrupts; standard C1/Superboard and UK101s
don’t). If your teletype does not use this format, refer to Leventhal, 6502 Assembly
Language Programming (Osborne/McGraw-Hill), p.11-111, or to the 6850 data-
sheet, for details of how to set up the ACIA accordingly.

WkHz
1C69 i

21250 Hep
1CED em o

SW1- Jeae /2wy | IC63

iy

4163

fan.]

Figure 7: Alternative mod for 110 baud on UK101.

7. *Component, 3-pole 2-way switch additional.

2. Should apply to C1/Superboard.

3. Remaining connections on [C57, 1C63, 1C58 stay unchanged.

For both 20ma and RS-232 interfaces a -9V supply will be required.

+ov

Tx DATA
1Pks2 4752 Yaw

-
—J

v b 47 Y2 W

QFigure 8: 20ma interface.

1. Install instead of RS-232 transistor.
2. Check current through resistors.

Interfaces

Teletypes are available fitted with one of three possible line units:
RS-232
20ma
80-0-80 volt Teleprinter Interface

RS-232 TxData can be implemented in accordance with the user manuals. 80-0-80
can be interfaced using the circuits of Figures 2 and 3 of the earlier part of this
article; however, it may be necessary to increase the supply voltage from 56V to 80V
and change the 2.2K 2-watt resistors to 3.3K 3-watt, and the 3.9K 1-watt resistor to
5.6K or 4.7K 2-watt. For a 20mA interface it is tentatively suggested that the circuit of
Figure 8 is tried instead of the RS-232 TxData circuit in the manuals.

Ray Fox

Copyright 1980 OSI UK User Group, unless otherwise stated.
‘Garbage collector’ listing: main text copyright Microsoft Inc.; alterations/corrections ‘public domain’.

