
r

-~
:S

,:, - ... !It
1_1 11 · 1 II ,:t"I :+,. (Ti

I •=1 ,1, ITJ n
t •l• ---1 ~ _Jj ,i,

•-:"• - ... '"
'· ' '-'' '·-' n, I ,=, IJ.,

"'

i::· -
◊.,.... ► ITI
1_1 ,,, ._ , ,,,

I C, •l•
,1, - -

111 lJ
LI 4• '" ·=· :....

C• ~ iTI
t_ 1 1£1 I I "'

(f •
•'ll D

•l• ~ .LI '1 •
+- m - ,...., ,:. :;...

.n ·r, ,:, ,(!
:.:.._ .(' 1 ,j , 1 1 , 1 , U 1'.h + m
C• i.. }:: I ,:..., •l• in n
,.._ Ill •l• - CJ I]•

um :..- rt, •=·
,J , 1ll ,:, •-•

•.i.., fi '1•

t..• ,n
I ,'-, •l·
•l• -

o,
,11 1· 1 ·=-· . ' .

i.. .LJ ,i '.'' ,_, n,
I •·~·.' •l•

I, :-, •1• .,.
"' . 111 l_l •:·

,] ,

J .J •l• 1 1 ,11
j ,: ' ,1, ,,.

"' fl,

r_,, :....
tf1 1:, ,:, r--t • · tn

~. ~ •l• 'j ' ~-: :.1: rT,

► 111 •J.•

"'

,,, l'.'1
I l-, •J•
,] , -,, .,.

i ,:·, .,. 11, '+ IT1
1TI r_:1

:._ Ci ,]. , -
n,
''·' n ~ J.I •l•

·=· :.,_ ,n
,_,1 ,, rr,

flt • - t

n
l I ,i,

,n 1_1 ... m

m
,11 r, ,:-.,

lJ •l • t' •_!_; I' IT,
•C• I • • •! '

L .Cl ,i,, I :~:
•1·

I •-• '1•
•1 • -

._,. ,_, n',
I -~-• 1· ,Tl fl .,. Ill .).

I ,:_, •l•
•l ·

r:n
•1'.' ,, ·=·

j ~ '1• ';' ~ : '1•

- 'ti 4 • •
., (f• ,,

.
1:1 ·=·

f~ '(6
•11 ...

_, m +- t:n
'1• •ll ~l

"' 111 11
1.I .;_.

,n ·-

•.II 1... D 4 •
0 '--

,: , ► - 1 ~

' I •. 1.1 1_1

I --=· •l•
•l• -

,,, .;,__ ti ,). ,_,, f , t• 111 rr, .r--i

·=· ~ I ,::' 1 •1• !TI r_1
,i- :.... LI •!•

"' Ill D •> r-1

!_I Iii

,n
IT, '+-

,TI
, 1, I_ I n, t ,:, •1•

m

(Ii • ·· •
,i, n

~ u ,J •

i.. 0 •l•
I , : , •l • 111 rJ

·=· ~
.:, "·"' ,.. ,n

·=· 1T1 •l· - ~ c, •1•
(11 - - · - :....

'j ' :::: '.i: {Jt
I_ I •J+ i_ l fTI

I ,-:_, •l •
•l·

,lJ ·r, ,.. 1TI
:... LI ,i, 1., m
C• i.... :.~ I •:'."• •J • . ., .,. - __ ,

•l • - .-t

m - 4
,Tl r-1 ,-, .._.

:L .IJ ,j , !_I •II

n, 11,

'" I ,=-:, ,1, T.J ,-. ,-. ►

f ,".:._, •l •
,TI •l •

•l· . --4 ' ·"
.A,. 0 ,] , I.• ,11 1 1

,:, :;__ I •~ • •l ·
•'ti •l ·

"' i:r,

IT, "+- ff•
,n r•

~-£ ,i,

.:,.
I ,:. , •J• ii:, ,. , •:·

LI ,i,
·=· ~

,_, '·''
I• :)'

.... n 4 ·
·1· ...
n r • n ;;.

-;__ •l•

"' "'

., , +- m
I ,:., •l • ,11 0
•l• ~ .CJ l'l • ~· i (J ,:-,

:..... D ·l •
I

i •.\ •

0

L
k•

Editorial

In case you thought we 'd forgotten you, we're back again, with the usual miscellany
of notes and ideas. Ma jor items this time are an article by Ray Fox on RS-232
interfaces for printers, and a feature on the dreaded 'garbage collector' problem in
BASIC's string-hand ling (solved at last by Dick Stibbons) .

Following on from the notes in the last issue, we've been very busy incorpor ating
everyone's ideas and requests into a new ROM for all the OSI and UK101 BASIC- in
ROM machines - and driving ourselves more than halfway round the bend in the
pro cess! (Its long pre-production testing period is the main reason why this issue is
slightl y late) . But CEGMON, the new ROM, is complete and very extensively tested ,
and has been available for a couple of weeks now as I write this. Mor e details
elsewhere in this issue; but since it does contain all of the features that everybo dy
asked for - such as true rubout , editing, screen -clea r and machine -code save -
and quite a lot of the other ideas - like a programmabl e screen-handler , and a fair
chunk of the Extended Monitor now in ROM - we feel it ought to 'ease our
members firmware headaches' as promised!

This issue is the last of the present volume , so if you were one of the many
members whose subscription started with or was backdated to the beginning , you ' ll
find a renewal/resubscription form in this copy of the New sletter. Everyone else will
be getting theirs as their four-issue sub runs out .

The good new s is that we are going bimonthly - judging from the number of
phon e calls I get as each issue approaches , three months is too long to wait between
' fixes' for many of you! We also now have enough memb ers to make bimonthly
production feasible . The bad news, of course, is that the six-issue sub will be twice
the original one , namely £10 - partly because of the higher effective production
cost per issue, partly because of ever-increasing postal charge s (up again in
November, and partly because in flation and the like hurt us as much as everyone
else! But we hope that the increase will not be a painful one , and that you belie ve it
to be worthwhile.

We're very glad to see that this Newsletter is indeed becoming everyon e's, ratlie .,
than merely a product of your editor's pen . In addition to the articles here , weals
received two implementations of FORTH for UK101 (from Bill Powell of the British
FigFORTH group , and from Roger Cuthbert) , on which more next issue; a co mpl ete
text editor, again for the UK101, from Peter Maughan; games from Neil Cannon and
Dave Caine ; and many phone calls and other comments for which I have, of course,
lost the few notes that I made . Many thanks to everyone - it makes our work worth
while as far as we are concerned, and we hope it does for you too.

We do definitely want to hear from you, and to know what you are doing . But
some people seem unclear as to our addresses and what we do, so:

Hardware/technical development:
George Chkiantz and Richard Elen at 12 Bennerley Road , London SW11 6DS.

Editor/documentation development:
Tom Craves at 19a West End, Street, Somerset BA16 0LQ.

\ -~
/(, j

:i

'

\I.
I

·j
t

Documentation Corner

Continuing CLEAR
Jack Pike says "I use CLEAR to clear variables and strings when trying to find out how
much RAM the program text occupies. Mor e importantly, though, I have used it for
checking whether the program will run with restricted RAM (eg. when squeezing
an 8K program into 4K) or to test 'error capt ur e' in programs which are protected
against having insufficient RAM to run . A typi cal substitute for RUN would be:
CLEAR: DIM DUMMY(FR E(0)/4 -4): GOTO first program line
I am aware that input of any unused line number (eg. 0) also 'CLEARs' the variables
etc. but I prefer to use CLEAR. I think it is definitely NULL for the booby prize! "

Peter Maughan comments that he uses CLEAR in order to wipe all existing values
when 'chaining ' sub-programs, so that all -too -common ly-used labels like I, T, X and
Y start afresh each tim e rather than picking up any value they may have had in the
previous sub -program .

INPUT again
Jack Pike's problem mention ed last issue, that of including commas and colons
within a string INPUT, is still unsolved; but severa l members (Roger Beaumont
among them) have pointed out that you can build an 'INPUT' via a USR call to the
keyboard, looking for your own delimiter rather than for commas, colons, quotes or
whatever. The basic sequence is:
1000 POKE 11,0: POKE 12,253 : REM set up USR ca// to keyboard subroutine
1010 A$ = '"' : REM clear the 'I NPUT' stri ng
1020 X = USR(X): B$ = CHR$(PEEK(531)) : REM CHR$(PEEK(533)) under CEGMON
1030 IF B$ = delimiter THEN RETURN
1040 IF LEN(A$) > 254 THEN RETURN : REM or do your own error trap
1050 A$= A$ + B$
1060 GOTO 1020
The danger with this dummy ' INPUT' is our old friend the 'garbage collector ' - if
you have any string arrays in your program, the reshuffling of string space that this
rQ!Jtine will demand will cause the garbage-collector bug in BASIC-in-ROM to
rash the program .
Jack Pike sent in another comment - not a puzzle this time! - to remind us that

INPUT supports the use of multiple commas - ,,,,,,, - to INPUT zeroes or, more
importantly, empty strings. This feature is useful , he says, when trying to INPUT a
variable number of significant values or strings to a program , for by holding the
comma key down after the last significant value , the auto-repeat rapidly gives more
than enough commas to satisfy the INPUT. The extra com mas are ignored, so the
string length is not critical. But it is a pity, he com ment s, that the,, construct was not
arranged to support a ' null' data input whi ch left the variable values unaltered.

The other OM ERROR - out of memory In the stack
David Cannon writes : " Being short on lin e numbers, I extended a program by a
GOSUB . Later I modifi ed the subroutin e to GOTO part of the main program . All

ent well until the eighth or ninth time through the game, and then 'OM ERROR' -

1,J)~pack space!
''Being used to programming m CORAL 66 which allows you to Jump out of

2

- -

subroutines, it took me ages to sort out this bug. Rub the point home to the othe r
members and save them time ."

GOSUBs, and also FOR :NEXT loops, push their return addresses on the stack. If
you jump out of a GOSUB , and in certain cases out of a FOR: NEXT loop, these return
addresses are left untouched; the next time round pushes the same return address,
and so on up the stack . The out-of-memory check for the stack is a little bizarre in
BASIC-in-ROM because of the way OSI has organised its IRQ and NMI locations
(right in the middle of the stack!) - for those interested, the error check is at $A212.

The reason why you get an OM ERROR after many immediate-mode actions (like
a POKE) after warm-start is because BREAK resets the stack to $(01)28; warm-start,
however , expects the stack to be at $(01)FF! - and that is where it resets it after its
OM ERROR call, or after any ERROR. If you want to do a string of POKEs after a
warmsstart, force a SN ERROR (syntax error) first, by typing a non-command such as
RUBBISH!

Aligning output on the decimal point
In last issue Matthew Soar gave us a function to align numerical output on the
decimal point. It was, of course, reproduced without one of its brackets! Two other
functions to do the same job , but for all numbers , were sent in by J.R. Parkes and Ray
Fox. J.R. Parkes' function is:
PRINT TAB(D-INT(LOG(X)*0.47 + 3));X
Ray Fox says that to cater for numbers greater than or equal to 0, use the same
routine as last issue, but with the following function:
DEF FNP(X) = -LEN(STR$(1NT(X)))-(ABS(X) < 1) +(X)
However, he says, the function can be made very general, catering for numbers
whose values range from negative through to positive. Then:
DEF FNP(X) = -LEN(STR$(SGN(X)*INT(ABS(X))))-(ABS(X) < 1)+(X=O)
where incidentally SGN(X)*INT(ABS(X)) equates to FIX(X) - a command not
available in 051 BASIC.

'Missing' characters in C2-to-Base-2 printer interface
It may be found as in my case that when outputing a stream of data via the RS-232
interface to the printer which includes CR/LF or Vertical Tabs etc. (i.e. functions that
cause the printer to a mechanical operation apart from actually printing) followed
immediately by data, that the first character of the data is lost. Whilst setting NULLS
will solve the problem at the beginning of each new line, it does not do so where
Vertical Tabs are concerned . I have found it necessary to delay the CRT print rate by
POKEing a delay into $0206 (51810) -this does not actually slow down the SAVE print
rate but allows the printer to return a busy signal before the computer packs a
second character into the double-buffered ACIA. The values I use are: POK E 518,3
when dumping at 4800 baud; or POKE 518,80 when dumping at 300 baud. My C2 ls
operating at 2MHz however, so it will be necessary to change these valu es for 1 MH z
machines - if in fact the problem exists at that speed. I understand C1 users have
had no problems . Incidentally , to operate the ACIA at 4800 baud on a C2 do POKE
64512,179: POKE 64512,176 in immediate-mode.

Ed: The reason why the character buffer can be over-written can be seen In th e
machine-code of the output loop in the monitor ROM and in BASIC's PRINT an
output loops . As soon as the ACIA has taken the character at the end of the lb~
another character is thrown at the screen and then to the ACIA, w it hout any interna

3

delay at all. The only delay is NULL, collected after a carriage-return. In some cases it
would seem that, particularly at 2MHz machine speed and 300 baud transmission
speed, the next character is thrown into the ACIA as soon as the old character has
been taken away - in other words before the printer has had any chance to process
it and, in the case of mechanical operations, to send out a 'busy' signal. POKEing 518
with a delay (which operates within the screen-handler) delays the effective output
to the ACIA to the point where the Base-2 does have time to catch up; but too long a
delay will take the problem the other way, with characters being repeated in the
main run . Experiment with delay values as required - particularly if you've built a
' home-brew' interface!

BASIC block-delete
One of the more annoying absences from the command list in OSl's BASIC is a

_ block-delete of program lines. David Caine sent us this routine, which works by
0 'send ing ' BASIC a long string of 'e mpty ' line numbers . It 's a little slow for clearing

large or widel y spaced blocks - but it 's better than laboriously typing numbers in by
hand!
62000
62001
62002
62003
62004
62005
62006
62007
62010

FOR I = 7936 TO 8026: READ J: POKE l,J: NEXT
DATA 162,199,189,131,162, 157,33,2,202,208,247,173,89
DATA 31,141,202,2, 173,90,31, 141,203,2,169,13,32
DATA 45,191,165,240,133,173,165,241, 133,174,32,98, 185
DATA 162,0,134,14, 189,64,215,201,95,240,6, 149, 19
DATA 232,76,43,31,169,0,149, 19, 133,196,169,18,133
DAT A 195,76,34,2,230,241,208,2,230,240,56, 165,243
DATA 229,241,165,242,229,240,16,193,76,116,162,69,31
PRINT : PRINT "Block Delete": INPUT "Start , Stop";l,J

62011 L1 = INT(l/256) : POKE 240,L1: L1 = l-(256*L1) : POKE 241,L1
62012 H1 = INT(J/ 256): POKE 242,H1: H1 = J-(2 56*H1) : POKE 243,H1
62013 POKE 11,0: POKE 12,31: X = USR(X)
The routine as written is for an BK C2, and will need some adaptation for other
machines - as it stands it will not run on a C1, or under CEGMON (part of the
routine starts at $0222, where CEGMON's screen look-up table statts). Two data
bytes in line 62004 (64, 215) are the screen address where the cursor appears after a
carriage return on a C2 (40, D7 hex) -these will need to be changed accordingly for
C1/ Superboard and UK101.

Notes on RND
The notes on RND which we mentioned in last issue were from John Partridge.
Following on from the reference we made to random-number generation in
Newsletter 2, he says:

The random number is stored as a 4-byte binary number (see Newsletter 2), and
this is changed when RND is called. The first random number loaded on Cold-Start
is 80 4F C7 52 - and exactly the same sequence will be followed after each Cold
Start. The first 938 random numbers produced do not repeat, but after this a loop of
1861 different numbers is produced, which then repeats continuously.

Changing RND(1) to RND(2) or any other positive integer does not affect the
i:~ccw ence at all . Using RND(0) will give a repeat of the last random number called .
Using RND(X), where Xis a negative integer, will start a new and different number
sequence, which in most cases degenerates into the same 1861-number loop as

4

before. However , a few of these degenerate into a loop of only 279 different
numbers . The best that I have found is started by calling RND(-5) before using
RND(1) in the usual way: this gives about 5000 different numbers. On the other
hand , calling RND(-79) before RND(1) results in only 403 numbers.

The RND routine is located at $BBC0 and can be called from a machine-code
program , with a new number being taken from $04-07 If a new range of random
numbers from □$00-FF is requ ired , then $06 or $O7should be used . A smaller range
can be produced by using the AND operation. For example:

LDA $D6
AND □$07
TAY

will leave in Ya random number in the range Oto 7. I have used this in a machine
code ·program to produce random movement on the screen (see later) . For thosP
interested , the repeating sequences can be shown with this short program :

10 R= RND (-79)
20 R= RND (1): IF R> 0.999 THEN PRINT X,R
30 X= X+ 1: GOTO 20

- but the exact entry to the loop of numbers takes more finding!

Finally , a short program to show Brownian movement , using running entirely in
machine code and using BASIC's RND function . The BASIC program is the loader
for the machine-code ; it is given here as for an 8K machine .

120 REM - Brownian Movement - M / c Mk .Ill
130 REM - Runs entirely in machine-code once going
140 REM - To stop, press BREAK

1000 FOR X= 7936 TO 8016: READ A: POKE X,A: NEXT
1004 REM - N = Number of dots - do not exceed 36
1005 N = 32
1010 A = 0: POKE 7986,2*N
1014 REM - Puts start locations in page-0
1015 FOR X= 0TO N: POKE 14+ 2*X,208 + A: A = A+1: IF A > 7THEN A = 0
1020 NEXT
1030 POKE 11,0: POKE 12,31
1040 FOR X= 0 TO 30: PRINT: NEXT
1050 P= USR(P)
2000 DATA 174,80,31,169,32,129,19,1b5
2010 DATA 214,41,14,168,24,216,185,64
2020 DATA 31,117,19,149,19,232,200,185
2030 DATA 64.31,117,19,201,208,16,2
2040 DATA 169,215,201,216,48,2,169,208
2050 DATA 149,19,202,169,166,129,19,232
2060 DATA 232,224,64,208,2,162,0,142
2070 DATA 80,31,32,192,187,76,0,31
2080 PATA 1,0,63,0,64,0,65,0
2090 DATA 255,255,191,255,192,255,193,255
2100 DATA 0
2120 REM , ,./
2130 REM - For an interesting variation , include 1024 POKE 7940,171

5

-

... - -

'I

,,

-,

Relocating t"e Extended Monitor (ExMon)
···oavid Butler and Michael Whittle both wrote in about relocating ExMon - since
the standard version supplied by OSI and Comp is located at the end of the first 4K,
for an assumed 4K machine. This means that the standard version is right in the
middle of the RAM on an 8K machine, and incidentally also in the middle of the
Assembler. ExMon does have a ' relocate ' function of its own, which corrects all
subroutine calls and jump addresses, but look-up tables and the like are either
scrambled (if they appear to be jumps or JSRs) or left untouched. To move ExMon to
anywhere else in memory, its jump-table must be changed by hand after using the
' relocate' - the jump table resides at $0960-0999 in the standard version. The jumps
are in pairs, with the low byte first as usual. To move ExMon to the top of an 8K
memory, for example, □$10 must be added to every high byte - the contents of
$0961, 0963, 0965 and so on. $0962-0963 are the address for ExMon's 'A' routine (print
-dntents of Accumulator), $0964-0965 is the address for 'B', and so on to 'Z'.

Michael Whittle included several other comments on ExMon in his letter . One
was a complete patch to allow ExMon to 'Save' in the ROM Monitor's hex-digit
format rather than the strangely unreliable checksum - the listing is below. This
dump routine is shorter than the checksum dumper, so - as he says - 'there is
room for another goody ', namely a routine to restore the vital (for BASIC) addresses
$0001-06, and having done so, to jump to BASIC. In order to implement this
routine, $0994-5 (or their relocated equivalents) need to be set to point to the
routine's start address , so that the spare 'Z' command will implement the jump from
ExMon to BASIC. Further monitor enhancements are to use SPACE instead of CTRL-j to
increment to the next line in 'a' and 'Q' modes (this is more important to UK101
users than those with OSI machines , since the standard UK101 monitor decodes the
old LINE-FEED key (i.e . CTRL-J) as ' up-arrow ' instead) . The change is achieved by
changing □$DA to □$20 at (standard) locations $0870 and $0O2F. It is also helpful, says
Michael, to make the quotes (for ASCII) advance to the next line, enabling an ASCII
string to be listed rapidly. This is achieved by changing $0B81 from □$60 to □$BB.

Listing to change Ex Mon's checksum save to digit-pair save (addresses as for Ex Mon
r~cated at top of BK memory space).

CJ 207FFF
EC6 201C1B

1EC9 A93A
1ECB 2069FF
1ECE 20A31A
1ED1 85C1
1ED3 20A31A
1ED6 85C0
1ED8 A92E
1EDA 2069FF
1EDD ASDD
1EDF 20AC1A
1EE2 ASDC
1EE4 20AC1A
JEE7 A92F
~~ 2069FF

~AC ''\ A200
A1DC
20AC1A

JSR $FFF7
JSR $1B1C
LDA D$3A
JSR $FF69
JSR $1AA3
STA $C1
JSR $1AA3
STA $CO
LDA □$2E
JSR $FF69
LDA $DD
JSR $1AAC
LDA $DC
JSR $1AAC
LDA □$2F
JSR $FF69
LDX □$00
LDA ($DC,X)
JSR $1AAC

; 'S' entry point - set SAVE flag
; get start and stop addresses - store in DC-OF
; ':' prompt for jump address
; output routine - adjust on C2 or under CEGMON
;. get byte - address high
; store in C7
; get address low
; store in CO
; '.' for address mode
; output
; ,tart address - high byte
; output as hex pair
; start address - low byte
; output as hex pair
; 'I' for data mode
; output
; clear X register as pointer
; get next data byte
; output data byte as hex pair

6

!

1EF3 A90D LOA □$0D ; 'C R'
1EF5 20B1FC JSR $FCB7 ; output CR to cassette only - JSR $BF15 on C2
1EF8 E6DC INC $DC ; increment low byte of address pointer
1EFA D00 2 BNE $1 EFE ; skip next instruction if low-byte not zero
1EFC E6DD INC $DD ; increment high-byte of address if low-byte was zero
1EFE ASDE LDA $DE ; get end-address, low byte
1FOO CSDC CMP $DC ; co mpare a~ainst current address pointer , low-byte
1F02 DOE8 BNE $1EEC ; loop back or next data byte if no mat c h
7F04 ASDF LOA $OF ; get high-byte of end address
7F06 CSDD CM P $DD ; compare with current address pointer , high byte
1F08 DOE2 BNE $1 EEC ; loop back for next data byte if no match (i.e. not end)
1FOA A92E LOA D$2E ; '.' for address mode (for restar t/ jump address)
7FOC 2069FF JSR $FF69 ; output
1FOF ASC1 LDA $C1 ; get restart / jump address , high byte
1 F11 20AC1A JSR $7AAC ; output as hex pair
1F14 ASCO LOA $CO ; get restart / jump address , low byte
7F16 20AC1A JSR $1AA C ; output as hex pair
1F19 A947 LOA □$47 ; 'G ' for ROM monitor ' go ' command
1F1B 2069FF JSR $FF69 ; output
1 F1 E A900 LDA □$00 ; get null
7F20 8D0502 STA $0205 ; clear SAVE fla g
1F23 4C0918 JMP $1809 ; end - jump to ExMon warm-start
1F26 A206 LDX □$06 ; 'Z' entry point - set co unter for 6 bytes
1F28 BD321F LOA $1F32,X ; load data saved before overwrite by di sassembler
1F2B 95D0 STA $D0 ,X ; restore to D1-D6
1F2D CA DEX ; decrement byte co unter
1F2E DOFB BNE $1F28 ; loop back until all restored
1F30 2074A2 JSR $A274 ; jump to BASIC warm-start
1F33 E9D0 SBC □$DO ; data only - tail-end of BASIC's 00BC subroutin e
1F35 60 RTS ; data
1F36 80 ??? ; data
7F37 4F ??? ; data
1F38 C7 ??? ; data
1F39 EA NOP
1F3A EA NOP ; pad to start of ExMon 'V' routine at 1F3B

Video display mod
killing 'overscan' on Cl/Superboard and UK101

Here is a simple way of achieving the aspiration of many Superboard/UK101 owners
- that of getting rid of the 'overscan' limitation to the number of characters per TV
line. The solution, whilst not elegant, is extremely simple, costing less than £5.00,
using three or four chips and a few passive components. I will only describe th e
method in general terms, allowing for all the variants of the systems readers may
have. But anyone who basically understands the guts of their machin e will be able to
implement the mod in a few evenings. The question of using th e mod to its full
advantage is a bit trickier ; I use a RAM-based operating so I can use th e full lj
length ; others stuck with ROM systems will only be able to use the expanded s,.:ree
through POKEs during games. [Special versions of CEGMON can be ' blown' i
required, however - Ed.]

7

- N•-"-• •- ••- - J'!' r"

i ,

The crucial aspect of the solution is the provision of two clocks: one for the
processor and cassette interfa ce, the other for the video . Inspection of the circuit
diagram shows that the first part needs only two signals - the 0 0-in and the input to
the TxCLK system (U57). These are readily provided by taking the 4MHz output of
the crystal system (pin 3, U58) and putting it through a 74-163 (or dividing chain
equivalent to it) which will provide 2MHz or 1 MHz signals for the processor and a
signal that will divide down to th e equiva lent of 600 baud for the cassette system. If
300 baud operation is need ed then a further divide-by-two stage (e.g. a 74-74) is
simply added .

01,1£1{':>CA N DELA'f GlE.NE.AAiDR.

+5'
YIDEO CLIX.K.~ GATE

H's

2.
3

t...7P~1

STOP ,;J;;;, ,,~: ~!S
'lf/xJ)n. 4 6

STOP s

DIVIDING C.W..1N FOR Att.e.s5oR. G..ou.:

t5

4MHz:. IN

2MHz.
1MHz.

FOR. 6<1XD /WJD

-;-2.!0lt.'Y:II> BAuD

VCl1XK
Uo PIN2., LJ'.)Q)]

8

"

:i'1', I'
' ,:

Now for the video part . This all uses the 'CLK' signal - i.e . only one input is
required to oper ate it all. Assuming we have cut the CLK trace with the crystal
controlling only the pro cessor and cassette, we need only one other oscillator to
drive the whol e vid eo system. In principle another quartz crystal would seem
desirabl e but instead we provide an adjustable clock using a Schmitt trigger 74-132
gate with a controllable RC network . We can now get the characters coming out
faster than the old system by taking the frequency above 4MHz, and hence get
more characters per line . But there's one thing missing, the characters are still being
spew ed out in th e overscan region . To solve this problem all we need do is to stop
th e cloc k when you ' re overscanning! This is very simple to do : when the horizontal
sync pul se comes along we initiate a delay equal to the overscan time . The delay
pulse gates the clock (using the same '132 gate chip as provides the clock) and all
video addressing stops . Because the video system is completely isolated from the
pro cessor system, th e proce ssor fun ction s perfectly normally ; all this stopping and
starting of the video clock at its own odd frequ ency has no effect on the pro cessor or
cassette.

It may sound from the description that to set all thi s up would requir e sophis
ticated scopes and timing gear! In fact I don 't po ssess a scope, and all you need to do
is get your resistors and capacitor s in th e right sort of area and th en pl ay with the
resistances till you get th e right combination of dela y (so you lose no characters to
the left of the screen) and of speed of video output (so you lose none to the right) .
Surprisingly the delay is very stable , even without crystal control , provid ed you use
decent trim pots . Initial versions with untidy wiring showed some int erference
between various signals, causing jitter on the screen and , in one bad case, causing
the processor to crash at 2MHz . But as soon as the wiring was tidied up (as tidy as
Veroboard can be) everything behaved itself. The display 'locks in' to all TVs I've
tried it on though , of course , minor adjustments had to be made to suit the differing
overscans of the TVs.

Dr. S.J. Abbott

Notes
1 74-123 used because it's familiar, a '121 would do as well. The spare monostable on
the '123 might always come in handy.
2 Resistances and capacitances fit my 64X 32 Super board with the resistances in the
middle of their adjustable ranges.
3 'STOP' can also be connected to pin 10 of U56 to activate (DB) -this tidies up the
screen during sync and delay .
4 Implements very simply on Veroboard .

9

CEGMON notes

As mentioned elsewh ere, last issue's di scussion o n firmware has brought concrete
resurts in the form of our new mo nit or , CEGMON . Ads will be appearing for it in
various parts of the comput ing press at the same time as this issue is published, so
there's not mu ch po int in describi ng it here - let's simpl y say that it does pretty well
everything you asked for , and a lot more besid es. Sin ce its do cumentation went to
press several inter esting poin ts have come up , and we therefore give them here.

Access to control and graphics characters
The new keyboard routin e all ow s dir ect access to co ntr o l characters and Ion OSI
machine s only) graph ics above 12810, using th e REPEAT key as a second control key .
These do fun ction as ex pected in th e Assemb ler or in the machine- code monitor
CTRL-Z does clear th e screen , for examp le. But BAS IC norma lly masks out alm os t all
chara cte rs be low 3210, and all character s above 12410 - typing CTRL-Z in BASIC' s
imm ediate mod e w ill not clear the screen, although PRINT CHR$(26) wil l. This is
explained in the CEGMON user no tes, in several pl aces; but jud ging by the number
o f phone call s we 've rece ived, a fair number of peop le seem to have fall en for the
o ld trap of ' if all else fai ls, read t he instructio ns'!

The masking is a limit ati on of BASIC, and not an error in CEGMON! But we have
provided two ways round th is: yo u can ei th er call the keyboar d routin e (JSR $FD00)
o r editor routine (JSR $FABD) via a USR call fr om BASIC, whi ch will return the key
value without maskin g; or yo u can use th e ' unm ask' routin e described in the User
Notes , changing th e BASIC input vector accordingl y. Control character s can then
be entered direct int o pro gram lines; but not e that cur sor home , screen or window
clear and other embedd ed command s make LISTings a little bizarr e ! The only
limits are that nulls (the ' racing car' graphi c) are always masked off , and LINE-FEED
cannot be used as th e fir st character in a line - this is to prevent problems when
loading from tape . Note also that the 'unmask ' routine must be enabled before
loading a tape with embedded control characters or graphics , or they will be
ignored during LOAD .

When ' unmask ' is in use, a limited 'single-key entry ' of some BASIC commands
and fun ctions is available , on all OSI machines and on UK101s with the REPEAT key
wired in. We didn ' t actually design thi s, and didn ' t realise that it was possible until
Steve Han/an of Beaver System s point ed it out to us - it is a side-effect of accessing
top-bit-set graphi cs, som e of whi ch are decoded by BASIC's tokenising routine as
being delimiters of certain keyword s. Usefully , the se are all mnemonic , because of
the way in which BASIC does thi s-R EPEAT-A gives AND , REPEAT-P gives POKE, and so
on. For example:

10 REPEAT-P 546,24
is equivalent to

10 POKE 546,24
and will appear as such when LISTed.

Thi s only works with upper-case alphabetic characters, and then only with some
f them. And not all the BASIC keywords are accessible in this way - BASIC
anslates them as being the first keyword in its table which starts with that letter. The

co mplete list of 'single-key ' keywords available is as follows:

10

I

j:

l
,(

i,~

ii
:1
i

...

REPEAT-A
C
D
E
F
G
I
L
M
N
0
p
R
s
T
u
V
w

AND
CONT
DATA
END
FOR
GOTO
INPUT
LET
MID$
NEXT
ON
POKE
READ
STOP
TAB(- note th e bra cket!
USR
VAL
WAIT

Memory-fill function in machine-code monitor
The monitor 's 'move ' function will over-write the code to be moved if the new start
address is between the old start and end addresses; but this can be turned to
advantage in order to fill a block of memory with either a single value-such as nulls
or spaces - or a repeating pattern, by deliberately 'over-writing' during the move.

For example, to fill the lower half of the Superboard's screen memory with nulls
(' racing cars'), use the monitor to type:

D200/20 00 - i.e. enter a null
MD200,D3FE > D201

This copies the first byte into the new start, which happens to be the next location; it
then copies that into the next, which is the new' next location', and so on. Note that
the new start is thus one byte on , and the end of the old block one byte 'early ' ;
adjust these accordingly ('n' bytes on and 'n' bytes early respectively) if you want to
put a repeating pattern ' n' bytes long into a block of memory.

UK101 keyboard
The UK101 standard keyboard is nut quite the same as that used on OSI systems:
there is no ESCAPE key, the REPEAT key is changed into a second BREAK key, and LINE-FEED
is changerl into 'up-arrow'. The loss of the ESCAPE is no real hardship, and can be
wired back in; the same goes for the REPEAT key, especially if the graphics and 'single
key entry' functions are required. But under CEGMON the LINE-FEED key is de coded
as such in a// its versions, including UK101. 'Up-arrow' is SHIFT-N, as on OSI
systems.

Non-standard video systems
Because of the severe limitations of the C1/Superboard standard di splay, a lot of
people have done 'home-brew' improvements, some of them with pr etty weird
display formats! If you've done that kind of mod, and would lik e to run your system
under CEGMON, we can get a 'special' version blown for you (th e User Group 's 32-
by-48 display mod is a 'standard' version, by the way). As long as it only involves

11

,J

J

changes to either the display format, the command characters and/or the keyboard
look-up table, 'specials' are quite easy, and will be available for a small surcharge -
contact us, or Mutek or your local dealer, for details. Outside of these relatively
simple table changes , any mod becomes a re-assembly job - and since there is just
one byte unused in CEGMON , that will inevitably mean losing some function or
functions, and will be expensive as well. But for those interested, we will be looking
into the possibility of ' losing ' the disc bootstrap in exchange for a 'stringy-floppy'
boot - the Exatron system now being available for OSI equipment in the States.

Finally , we hope that those of you who 've already bought CEGMON are enjoying
the difference that it makes to their programming; and, in our usual cheeky fashion,
we urge those of you who haven 't got it to go out and buy it, especially as the
machine-code series we'll be starting next issue will be making full use of its monitor
facilities!

Velvet Software's peripheral control unit
a hardware review

This comes as a kit complete with all components . It is very well documented in that
the instructions are clear , the various diagrams well drawn and legible . There is
however no circuit diagram. The data lines are taken from a socket next to the ACIA
and partially decoded lines taken from the prototype area using a DIL socket. One
chip (a decoder) has to be wired into the Super board. The extension board consists
of copper-strip Veroboard in which the strips have to be broken in the appropriate
places. Whilst not difficult this is rather tedious and I think many people would
prefer to pay the extra cost of a PCB.

There was one serious drawback with the kit I received. The pin connections of
the four transistors used to operate the four reed relays were shown as for the
BC212L whereas in fact the transistors supplied were BC212A (although not marked
as such) which had different pin connections. It took a couple of hours of
debugging before it was realised what had happened . The symptoms were the four
relays being switched on irrespective of what was put on the address and data lines.
In addition one of the relays turned out to be defective, but one would not expect
this to be a common fault . Other control lines than those needed to operate the
relays are taken to the extension board so that other peripherals can be connected
to it. However without a circuit diagram it is not possible to know what addresses
could be utilised or what further decoding would be necessary.

I would say that the kit does represent good value for money and is a very useful
addition to the Superboard. I am personally quite satisfied with my purchase.

Michael 5/ifkin

elvet Software produce the controller kit in a variety of configurations, including
··one with a programmable sound generator - price according to configuration .
Th eir address is 26 Colesbourne Close, Worcester WR3 9XF; phone 056 885 453.)

-

12

____.

1

1i

I, l''i ii
·f
l
j

'
'

1,,

i;
II!'

II'
·f'
i
i
'I
I

The 'garbage collector' bug
- the problem, and two solutions

It is intere sting , but infuriating , that a serious bug still exists uncorrected in the
version of Mi cro soft 's 6502 BASIC used by OSI and Comp - the 'garbage collector'
bug that convert s everyone 's word-processor into an unusable mess of garbage .
Ohio Scientifi c, we ' re told , have no real plans to fix the problem , since ' the small
benefit s are totally out of proportion to the cost of masking new ROMs '; but
CompShop are a littl e more amenable at the moment , of which more later .

Like mo st bug s, it 's small, subtle , not often encountered , but almost invariably
fatal to the program concerned . It onl y occurs when BASIC tries to reshuffle string
array s to remove redundant ones and 'invent ' a little more room - hence the term
'garbage colle ction ', and hence its fatal effect on word processor programs. The
symptom s are well known : in th e middle of handling a string array th e program
suddenl y ' hangs', and the screen seems to ' pul se' about on ce ever y one and half
second s. Sometim es, but only som etime s, th e system recover s- and then onl y after

long wait ; but even then th e cont ents of the string arrays will usually have been
scrambled into garbag e them selves. The same thin g happen s if the ' how mu ch free
memory' function - Y= FRE(0) - is called .

This only happens with string array s such as A$(1), A$(2) , not with simple strings
like A 1$ and A2$; and it tends mostly to happen when string arrays are concatenated
- such as by using A$(X)=A$(X) + B$ to build up a string, since these operations use
up a vast amount of temporary storage space while the string is being built. To
demonstrate what happens, George Chkiantz provided us with this modification of
a routine originally published in Aardvark 's First Book of OSI. Like the fast screen
clear published in Issue 2, it stores the strings in screen memory rather than in the
normal program workspace; and then shows what happens as a string'i s built up .

First, change the string space pointers in immediate-mode (i.e . type in the POK Es
without any line numbers). This can't be done within a program - it would lose all
its variable and 'string pointers in the process!
POKE 123,0: POKE 124,209: POKE 133,0: POKE 134,212 (or POKE 134,216 for a 2K
screen-memory display on a C2, C1E or the like).
Then use a program to clear the screen , build up a string array (in this case of the
alphabetic characters a to z repeated for each element in the array) , and halt
between building each element by calling the keyboard routine, to wait until any
key is pressed.
10 FOR I =1 TO 32:PRINT:NEXT - screen-dear (PRINT CHR$(26) on CEGMON)
20 DIM L$(20)
30 K=64
40 FOR 1=1 TO 26
50 FOR] = 1 TOK : L$(1)=L$(1)+CHR$(96+J)
60 REM see what happens if you insert Y=FRE(0) here!
70 NEXT J
80 POKE 11,0: POKE 12,253: X=USR(X) - wait until any key pressed to continue
90 NEXT I
When this program is run, the screen will fill ~ith 'garbage' string s from the con
catenation - the bottom string will be the final correct one . The program will then

13

wait for any key to be pressed , on which it will construct another string as th e next
element in the array . This will continue until the string space is full and the string s
being stored meet up with the pointers at the top of the screen . If the garbage
collector (or GC from now on) did its job properly , all the 'garbage ' would be
cleared as string space ran out , and only the real strings would remain , eventually
causing an 'OM ERROR' (out of memory) when they ran into the pointers . In
practice, with the original GC, the routine can only fill the area - it 'bombs out ' as
soon as the GC is called, either on running out of storage space, or if FRE(0) is called.
That is what goes wrong, and that is the problem with trying to write any kind of
word-processor for the BASIC-in-ROM. Quite simply , it dies . There are a number of
' fixes' around , such as those published by Elcomp and Aardvark in their respective
First Book of Ohio Scientifi c and First Book of OSI . Elcomp 's routine does not work
at all , while Aardvark's BASIC patch (when shorn of its published typing errors!)
only improves th e situation rather than resolving it. The only complete solution is to
fix th e problem at the machine- code level, of which more anon ; but for the
mom ent , here is th e corre cted Aardvark routine . As can be seen with the test
program above , it run s a lot longer before expiring - probably good enough for
many applications. •

10 X= PEEK(133):Y= PEEK(134)
20 L= 256*Y + X:L = L-262
30 Y = INT(L / 256): X = L-256 * Y
40 POKE 133,X:POKE 134,Y
50 POKE 11,X:POKE 12,Y
60 PRINT "POKE 11," ;X; "POKE 12,"; Y
70 PRINT L: A=45383 :B= 45644
80 K= L:FOR l = A TO B
90 IF l <> A + 34 THEN 110

100 M = K+ 146:GOTO 240
110 IF l = A+S9 THEN 130
120 M = K+141:GOTO 240
130 IF I = A +67 THEN POKE L,4: GOTO 230
140 IF l <> A+84 THEN 160
150 M = K+ 209:GOTO 240
160 IF l <> A+137 THEN 180
170 M=K+146:GOTO 240
180 IF l=A+216 THEN POKE L,2:GOTO 230
190 IF l=A+217 THEN POKE L,24:GOTO 230
200 IF l< > A+261 THEN 220
210 M=K+4:GOTO 240
220 X=PEEK(l):POKE L,X
230 L= L+1:NEXT:PRINT "Location" :END
240 Y= INT(M/256):X=M-256*Y
250 POKE L,Y:POKE L-1,X
260 GOTO 230

Using an external 'patch' may work well enough in some cases, but it still isn't good
enough for many others. The problem really needs to be resolved at the machine
co de level , in the BASIC ROMs - in BASIC3, to be precise . Dick Stibbons, one of

14

I I'
'

:.([•.··.

I

i
I
I
I

our members , has been through the 'garbage collector' routine with very carefully
indeed, not just identifying where the bug is and why, but providing a complete
(and also short er!) solution as well. The following are his notes on the problem and
its solution .

The complete Garbag e Collector (GC) routine at $8147 to $824C will move one
string at each pass as follows :

Reset the $81, 82 pointer to be equal to the $85, 86 pointer , thus making all
memory available .

Using these two pointers to define a window, search every current string pointer
pointing within thi s area and find the one with the highest value .

Move that string to the top of memory (the only string it can over-write is itself) .
Loop to find the next-highest string and repeat.
When no point ers remain within the window which is left , the routin e is

complete .
The routine has two distin ct part s:

1 Find the next string to move .
2 Move it and updat e the pointers .

There are three types of string which need to be checked. These are as follows :
1 The Descriptor Stack
BASIC waits until it has used up the la~t byte of free memory before calling the GC
routine. This means that it almost certain to be part-way through creating a new
string . After garbage collection , it continues from where it left off, and finishes the
string , so steps must be taken to ensure that garbage collection preserves the
substrings which were being worked on and updates their pointers .

These are defined in the descriptor stack , nine bytes in page-0 from $0068-71,
divided into three groups of three , each capable of defining a substring in the form :
length; address low ; address high .

The number of descriptors in use (three maximum) is indi cated by the descriptor
stack pointer at $0065. which contains:

68 0 descriptors
68 1 descriptor
6f 2 descriptors
71 3 descriptors - note the intervals of three .

2 String Variables
The definitions of these start at the address pointed to by $78, 7C. Every variable -
string or numeric - is defined in six bytes [see Issue 2- Ed.). If it is a string, the form
is:

15

1 Name (first letter, in ASCII)
2 Name (second letter, in ASCII, with bit 7 set to denote 'string')
3 Length of the string
4 Pointer , low byte (low of actual address of string)
5 Pointer , high byte
6 Null

User Group Notes

Contacts
Last issue we comm ented th at several members wanted the 'club ' aspect of the
Group developed , for inform al sub -g roup s and meetings. We asked for people who
were interested to send in th ei r names and addresses; here are those who've put
themselves forward so far .
David Web ster, 99 Edmond stown Road, Edmond stown , Rhondda , S. tr ales. Phone
(work) : Caerphilly 885911, Ext.30.
Dick Stibbons, 3 Man sfield Driv e, Hayes, Middx. UB4 8DZ . Phont . 01-848 9926.
David Cannon , 91 Gl enfi eld Frith Drive, Glenfie ld , Leicester LE3 8PU. Phone: 0533
871140.
Kevin John s, 77 Feec hes Road, Pritt lewe ll , Sout hend -o n-Sea, Essex SS2 6TE. Phone
(work): Southend 49431 Ext.434.
Kirklees Comput er Club : meets every M o nd ay at 7.30pm in The White Swan, 14
Kirkgate , Hudder sfi e ld - about a doze n of its memb ers have Superboards .

Eric Wilson of ACS Cleanin g Services, at 1 Raglan Cou rt, 31 Balaclava Road, Bitterne,
Southampton (phon e: 0703 464611), would lik e any exp erienced members in the
Hampshire area who would be int erested in working on a fairly large data-matching
project to get in tou ch with him .

Member Ian Wales has some equipment for sale - the old type 400 series system,
consisting of 400 CPU board , 440B video (with colour), two 420B 4K RAM boards,
and the associated documentation. He's at Koenigsbergerstr . 10, 6107 Reinheim,
Odenwald 1, West Germany ; but he'll be back in the UK for a week at the end of
October, and could bring them with him then .

Finally, we've all noticed the dearth of women in the computing field g~nerally , so
this note from Veronica Leach seemed particularly apposite:

"One thing puzzles me, there don 't seem to be many women into home
computing. Friends at work regard me as strange , and consider that, on the whole,
the money would be better spent on a Kenwood food mixer. This seems to be an
awful shame, since I realised that you don ' t have to be a whiz at maths in order to do
programming. I have become rather computer orientated; my job for instance
would be a cinch . .. for every bus operator who wants to take another bus on his
licence I have to check four different books and refer to two card indexes. This takes
ages, and moves me in about ten points of the compass each time - Bah! Even the
engineers (mechanical, not electrical) seem impressed . 'Do you understand this? '
seems to be the favourite question as they thumb through the mags.

"All I want now is a T-shirt with PEEK & POKE on. Husband sez he won't be seen in
the streets with me if I do, 'what about RAM & ROM?'. No way!"

.,

Ii::
1 !
'I

,t

:t
I
i
I

THEWORLD'S
FINEST
HOBBY

COMPUTING
fTIASTER

PACK sonwARE MASTER
PACK

UT/UT/ES MCI(for for the mtATIG'lfJIIMES MCK
CIJmpukitUK/0/and TIS 80 Level II forTT(S80(16K).VideoGenie.
OhioSuperD()(Jrd COMPUKIT UK IO• Compuk/tUK/01 (81().
(all screen forfn(lfs) 'I Ohio Superlxxtrd
Si,teen.ut! lit y µro gra ms tnat wi ll SHARP MZ-80 (slrlndardscreen.8K)
revolut1on1se your µrourarrmrng ' •
techniques. All pr ogra ms feature OHIO SUPERBOARD andSl,(lrpl,fl-80K
,, t.~ l ogica l screen address sys tem .
(l ine l co lu mn 1 is address lUl) ,... . Three extra- speci a l ~ames
with FULL µrotection again st under/over VIDEO GENIE uJARMTEE~ to ap~ea l to e nthu siasts
t>Okin9 . who want somethin g a li tt l e more thought-

pro vok; ng t han Space 1 nvader s !

• Si11Yl e and complex ara,>hics created CASIO so•t502P
witil s ingleb 05Ub ca ll s * In put s 11 • SQUARE SOLITAIRE - Sol itaire brougnt
disf,i la 1ed at any screen addres s withou t up to date . Uni que REPLAY feature
sc roll ing • st rin gs disµ la ye<l at any sc re en address ;ives yo u a s 1uw-motion replay of al l your rroves, and
.iithout scro ll ing • Full page of strings disp l ayed by a ll ows you to resll!le pla y at any point, he l pi ng you
defining just one variable • TEXTRA text disp la y - a fu11 t o deve l op win n ing s tr ategy . Incr edible g ra phics'.
sc r ee11ful of t ext disp l ayea d i r ec t from t i1e keyboard
• LJra;.,hi -:s Oesig n Tool ki t - ' Grap hi cs Under l ay ' and
' Screen Addres s Ind i cat or ' to spe~d yo ur graphics design

• NINE-rn-A-LINE - The age-o 1 d game of Reverse with new a nd
cha ll e nging va riation s t o keep you eng rosse d for ~our s.

• Precision Random Nuni.Jer Generator - a great improv ement
on Microso ft' s 1mo • Instant c l e ar and fil l sc reen and
otner inv alua b l e ro utin es • f1odul ar desig n to minimise
,<Ai1 needed (fu ll i:,ad . 1300 by te s - GOO - 600 bytes in
tJi:, 1c al a !~~licatio ns} • 'tlritten entire l y in BASlC for easy
customisation • Comprehe nsi ve ope ra t ing instructions and
demons tr a ti on µr ogra m.

Our Dest-se llin g Ul(IUl /SUPERBUARJ µr ogram pack'.
.Jul'! J1iLY £14.9r, inc l uding VAT

TOOIU)ll(: [njoJ t i1e ultihiate demonstrat ion of pro gram

• EXECUTIVE J IGSAW - An e nt ire ly new !Jame t hat ' s as
fru s troting as it is fasci nat i ng . Use yo ur s ki ll to

exactly fill the jigsaw frame . Gr':!at fu n (e ven if yo u
don 't l ike ordinary jigsa ws} .

Otrier l eading software publi sh ers would proba b ly ask
£8 - £12 for just one of t he se ' Roll s - Royce ' games. But

PREMIER' s va lu e - for-rroney price is only £12.95 for all
THREE, and that i nc l udes VAT.

JVERSEAS: Pl ease deduct VAT (divide pric e by 1.1 5) and add
postage for 200 gra ms \o\'eight OR se nd two Int ernationa l

Repl y Coupons for quotation/ program deta il s .
-11Jd 1 i ty - in yo ur mm ,10me on you r own computer, with t,1e
secu rit J of our lU-da_::; monej·-;Jack £Uarantee of satisf action

u": Jus t send c:1eque/PO to i nclude 50., to co ver post, Order s norma ll y despatc hed within five workin g days
~-ack i ni:i anci i n;urance. PLEASE SPEC lFY YOUP COMPUTER WHEtl OR.DER l:lG

PREMIER software is available ONLY direct from PREMIER PUBLICATIONS

1ro;"Preffli8rPubifCGtiOlls
12 Kingscote Road Addiscombe Croydon Surrey Telephone 01-656 6156
Britain's biggest hobby software spedalist-over 90 000 programs sold to date!

·"'

Jll 1 •

Dealer Notes

Again a collection of new dealers (new to us, at any rate!), plus a few comments from
others on new items and other things they are doing.

Northern Micro , 29 Moorcroft Park Drive , New Mill, Huddersfield.
Tel: Holmfirth (0484 89) 2062.
"We are a small concern who began trading on 15th September, offering the Super
board with various modifications and add-ons , such as the 48X 32 Superboard , an
upgrading service for existing models , and also a kit which will include a ' fix it '
service for those who experience difficulty . We are hardware based and as a result
we are only offering a few programs for sale, most of which are in machine-code ;
these include a Space Invaders program in 3½ K and a Extended Monitor which
displays 120 bytes on screen , etc. We expect to sell mainly to private individuals and
we therefore intend to have a technician available during the evening and at
weekends to answer queries and give demonstrations, as this is when most people
are wanting service ."

Premier Publications, 12 Kingscote Road, Addiscombe, Croydon .
Tel: 01-656 6156.
" Premier Publications , Britain 's biggest hobby software specialist , has a rapidly
expanding range of high quality software for the Ohio Superboard and Compukit
UK101. To continue this expansion programme , we are urgently seeking freelance
part-time programmers to join us. We pay generous royalties , and Premier
marketing assures you of a wide market for your programs. We are interested in
hearing from programmers of ready-written software for sale, and from program
mers who would prefer to write software based on ideas and program briefs
provided by us. Fluency in BASIC or machine-code is assumed, but all programmers
receive advice on 'house style' and sta11dard subroutines. For details please write,
or preferably telephone , to the above address and/or phone number above."

See Premier's ad elsewhere in this issue for more details about them and their
current range of software .

Ing. W. Hofacker GmbH, 8 Munchen 75, Postfach 437, West Germany.
Tel: 08024/7331.
Hofacker are the European distributors of the American group Elcomp - software,
hardware add-ons , books and technical notes for OSI and also for Pet and TRS-80-
under the Elcomp and Silver Spur trade-names . Winfried Hofacker let us use part of
his stand at the recent PCW Show, and had a very good range there, including useful
items like an eight-way joystick (i.e. with vertical and rotary movement); we'll be
reviewing Elcomp's First and Second Book of Ohio Scientific in the next issue.

JED Ltd, 15 Ashgrove, Springhead, Oldham, Lanes. Tel: 061 652 1604.

Our member David Hardman rang up to suggest a number of offers his firm could
make for other members. They deal mostly in printers and printer mechanisms: for
example a 21-column (2¼" standard paper) mechanism, without electronics , for

I II

1,

,i

,,,

'

11

I

.,_

Planning cards
A-complete range of planning and programming cards and pads for users of OSI

and UK101 systems .
BASIC D machine-code D video charts D opcodes D graphics

r

ASCII chari.cter set

';"

NumMI" bM4!-connnions
OedM..1- '-•a,t,,ci,,u,- w...,, .. uus ,.

----------------• 1 2 J • S 6 1 I , It, I C O I f ••

6502 opcodes

Ch.iltengtr pJ11phk1 cha rKftt 1e1
, , ,.,.,_ ... ".'"'~'"'"'""'"

z X)(::::: ~ .. tw ""' ~ ~ T ♦ •• ·- ... , .. ·- ·- ,... - ·- -
~

~e~.;'
Pro,ramm~ o .. rr

~ -- 1--

--~

' -

• ,. "J~
7

♦

..

,,.,

r=,---

' 1 j
'

'
j .l !
~ •

~
,

• f i
! ~

0 - - I
J ' - j- ~

~ I
- I r I

i f 0 f

11
'.i
!1

!
i

\ .\
.,,_<.ICI"''"'

Available to User Group members at the 'trade rate' of £1.50 for 100-sheet pads,
50p for laminated cards .

For further details and complete list of pads and cards, contact Wordsmiths at
19a West End, Street, Somecset BA16 OLO.

\fi-,,

£44; and an 80-column , ?-needle , sprocket-fed mechanism for about £160, depend
ing on the number of orders . Anadex and Epson heads at considerably less than the
'official' price (new, or will recondition your existing printer head). Also metal case
for Superboard / UK101, available with choice of three different heights of lift-off
top, starting at £23 for the low - lin e version.

Zen Computer Services, 71 Manor Avenue , Sale, Cheshire M33 5JQ.
Tel: 061 962 3251.
Produces a variety of hardware items for OSI equipment, including a very useful
own version of OSl's 620 board backplane unit (see photo). "(his is a six-slot 48-line
backplane for OSl's big-system boards, with a 40-pin DIL header for the

1 Superboard/C1 or UK101 expansion socket - allowing you to use the 470 floppy
fl controller for 8" floppies on a Superboard, for example. The backplane/expansion

interface set is £43.70 ex-stock, built and tested. Also available are a 'S0Hz'
conversion kit (£5) and a useful OSI-to-Acorn adaptor (£3).

V

"I

1:
'i
! i
]I
ii:

,i
,ii

,tJ

I
:11

I

11

,,,

Ii
'

CEGMON
'the best thing for OSI systems since OSI itself'
CEGMON is a new monitor PROM for all Ohio Scientific and UK101 BASIC-in-ROM
systems. Written by the organi~ers of the OSI UK User Group, with the user's needs
in mind , CEGMON gives you the kind of firmware support you need to get the most
out of your system. and gives your computer more features and flexibility than
anything ;n it~ price range. For example:

D a screen editor for use with BASIC or Assembler programs, linked directly to the
system's calls for keyboard input; allows copying and alteration of text or
progr.:im lines from anywhere on the screen.

□ d revised keyboard routine , giving typewriter-like response, true ASCII key
values and direct access to most graphics.

D a completely new screen handler - output to the screen is via user-definable
'windows ·. easily programmed to allow free mixing of text and graphics, protec
ted non-scrolling areas, and multiple scrolling and non-scrolling zones. Cursor
controls and separate 'window '- and screen-clear commands are also included;
text i·; printed from the top of the current 'window'.

D full machine-code monitor, co-resident with BASIC and Assembler . Includes
machine-code /odd and save in auto-start format; memory modify allows input
of text and grdphics as well as hexadecimal instructions; tabular display of
memory content~ in hexadecimal; memory block move / copy; and breakpoint
handler for debugging programs . Most subroutines are available for use in
your own programs . '"'

□ disc bootstrap - OSI-compatible floppy-disc bootstrap available on all versions .

□ input and outp ... t from BASIC or Assembler vectored through RAM, allowing
direct linkage to user-defined 1/ 0 routines .

D compatible design - designed for the maximum practicable compatibility with
the standard monitor , CEGMON will run your existing softwace with little or no
alteration.

All this pJcked into a single replacement PROM! Five versions of CEGMON are
available:

C1 - standard 1.)SI Superboard or C1.
C1 E - 32 >< 48 display Superboard/C1, C2-type keyboard scan (Mutek conversion).
C1U - 32X 48 display Superboard, C1 or UK101, standard (invert) keyboard scan.
UK101 - standard 16X 48 display UK101.
Cl - OSI C2 and C4 systems (requires small hardware mod to address full 2K ROM).

Price: £29.50 (excluding VAT) includes full documentation with program examples
and reference card.

Further details from UK distributor : Mutek, Quarry Hill , Box, Wilts. Tel : Bath (0225) 743289

' .,

More details from Easicomp of Norfolk and Beaver Systems of Thame :

Easicomp, 57 Parana Court, Sprowston, Norwich . Tel : 0508 46484.
Mentioned in last issue, but we'v e had a bundle of leaflets from them since then.
They do their own 'cased Superboard', called the 'Easicomp Companion'; a variety
of software and other assorted item s like the Microcase; and also an interesting
looking programmable sound-generator board for Superboard/C1 and UK101.

Beaver Systems, Norlett Hou se, Dormer Road, Thame, Oxon OX9 3UC.
Tel: Thame (084 421) 5020.
Sells the full 'personal ' OSI rang e - Superboard to C8P - and also the Mutek-type
'enhanced' C1, the C1E; but specialises in software, partly bought-in (from OSI,
Aardvark and others), partly their own publication (t~y will publish any good
software for OSI/UK101 kit), and partly their own productions - including the most
amazing version of Life that I'v e seen yet, and a very neat set of utilities. Steve Han Ian
ve ry kindly allowed us to use part of his stand at the PCW Show to demonstrate our
new monitor - many thanks .

The arrival of CEGMON
We're pleased to say that our new Monitor EPROM for OSI BASIC-in-ROM systems
and the UK101 is now ready. (The name CEGMON is based on our initials, but don't
let that put you off!). We've included as many of your suggestions and requests as
we could, but we couldn 't put a// of them into a 2K ROM , of course! That 's why you
won't find a 'named file' cassette handler on board, for example - to do the job
properly would have taken an inordinate amount of space - and neither is there a
'data save and load' system because, once again, it takes a lot of space to do it (and in
fact the best way to handle data files is in BASIC itself, where it only takes a couple of
lines!). What you will find, however, are a range of useful functions which make
your machine far more flexible than before, yet without losing compatibility with
existing software. You'll find full details in the ads in Practical Computing and
elsewhere; but briefly we've included an improved version of the Sirius Cybernetics
screen editor; a revised keyboard routine that ends the ludicrous juggling-act with
the Shift-keys for lower-case, with proper decode for Return, Line-feed, Escape and
Rubout (which now does what it says on OSI systems!), and using the Repeat key (on
OSI systems only) as a second control to access graphics; a new fully-programmable
screen-handler like that on the new Super-PET, with screen-clear, 'window'-clear
and cursor controls; expansion of the machine-code monitor to include not just
machine-code save (also compatible with the Assembler- at last!), but virtually all of
the OSI Extended Monitor (bar disassembler or search) as well. We've not only
retained the disc bootstrap for the Superboard/C1 and UK101, but added one for
the C2/C4 series, which also now have the former systems' user-definable input
output vectors. We had to use some of the old 'free RAM' in page-2, from $0222-
0234, for the editor's and screen-handler's stores and tables; but these can be
disabled with a single POKE, to allow existing machine-code routines starting at

222 to run. We've been very careful about compatibility: almost all of the former
routines' start points have been retained, and the editor and Monitor both work
happily with either BASIC or Assembler.

VII

f

I
ii
i'

At about B4 aft er the dreaded 15%, CEGMON isn't particularly cheap (and no,
there ain ' t no User Group discount!); but there 's an awful lot in there! Not just the
firmware , but a dece nt bit of documentation for it as well - 20 pages plus a
reference card . Main di stributors are Mutek, at Quarry Hill, Box, Wilts ; other
dealers such as Premi er Publi cation s and Beaver Systems should also have it by the
time you get thi s Newsletter.

CEGMON and WP-6502 wora-processor
CEGMON is, as far as we kn ow, happil y co mpatibl e with BASIC, th e Assembler and
ExM on. The o ther majo r softwar e package whi ch a lot of peopl e now have is th e
WP-6502 word -pr ocessor from ' tho se Chinese guys', Dwo Quong Fok Lok Sow -
whi ch will run und er CEGMON , but only with the new scree n-handl er and editor
di sabl ed . Its main jump-tabl e is sto red at $0222 onw ard s, so that hitting BREAK will
scrambl e it, and its co ntent s will have to be restor ed each time . Steve Han/an of
Beave r Systems has been d iscussing th is wi th DQFL S, and they are w i ll ing to prod uce
a new version of WP-6502 whi ch will not o nly resolve th e BREAK probl em but
should use some o f CEGMON 's ed it ing and screen faci liti es as well as the improved
keyboard. Thi s will in vo lve a re-assembl y of th e source co de, but Steve reckons it
should be here in tim e fo r Chri stm as.

VIII

3 Arrays
The definitions start at the addr ess po inted to by $7D, 7E. Each string array definition
has the form :

1 Name (first lett er)
2 Name (second lett er, with bit 7 set)
3 and 4 Length of point er bloc k, incl udin g definition section
5 Number of dimension s
6 Null
7 Size of last dimension
8 Null
9 Size of penultimat e dim ensio n

10 Null
- and so on until th e fir st dim ensio n of the array is reached .

The distance between th e ' initi al lett er' byte and th e start of the element pointers
themselves is given by (N *2) + 5, wh ere N is t he number o f dim ensions (see $8187 ,
8188).

The element pointer s have th ree bytes each, again in th e form : length ; address
low , address high . Import antly , th ere is a null be tw een each elem ent pointer .

So, back to the garbag e coll ecto r itself . Part 1 is built round a subroutine , $81D1-
8215, which examines any on e strin g and deci des wh eth er it qualifi es for a move.
The tests are:
$81 D4 Is th is variable a string? (Variables only) .
$8109 Is its length > 0?
$81 E4 Is it in the area currently defined as free memory?
$81EE Is its pointer higher than any one checked so far?
If all the answers are 'yes' , the 'core' of the subroutine is reached ($81F6-B205) and
the string position is recorded in $AA, AB ; its pointer position in $9C, 9D; and a
number to indicate its type in $A2.

This subroutine is called from three areas in the program, each devoted to a
particular type of string. In ea"ch case, a working pointer ($71, 72) is set up for it, and
the increment between pointers is stored in $AO.

The subroutine is called from within a loop and itself increments the pointer,
ready for the next call. It is the duty of the calling routine to check when all strings, of
the type in which it deals, have been examined . String types are checked in the
order Descriptors , Variables , Array s, and the increment for each case is 3, 6, 4.

The principal bu g in the exi stin g routin e is that the increment given for arrays is
not 4, but 3 ($8188) . The search thus attempt s to treat spurious bytes as pointers, and
crashes. [The 'glitch ' on the screen every one-anj-a-half seconds is this confused
search running through the screen memory each time round its loop - Ed.]
Changing the increment to four does solve this problem , but creates two more in
the process!

When all the strings have been checked , the routine then jumps to Part 2, $8197,
the ' move' routine. The first tests to see if a string qualified for a move during the
search . If not (i.e. $9D=0), garbage collection is complete, and it branches back to

ick up the RTS at $8215.
There then follows some arithmetic to cal cu late the distance between the pointer

pointer ($9C, 9D), and the 'Length' byte of the string definition. The figures (which

16

,.- -

I]

:1
'

- ~

arise purely because of tne way the search routine is set up) need to be:
Descriptors 0
Variables 2
Arrays 0

and will be stored in $A2. The original system noted the increment value in the
subroutine 'co re ' ($A0-A2) and used this to work out the new increment - fine if
there are only two possible primary increments, 6 and 3; but there are now three: 6,
3 and 4. Easy if you've got bytes to spare - but we haven't.

On the other hand , the set-up implies some redundancy. If we found the string to
know it needs moving , how come we need more arithmetic to work out how to
move it? Looking back into the core of the routine, we find that Y will be 2 for
descriptors and arrays, and 4 for variables. Decrement it twice and store it in $A2 and
we have the new increments for later use in one easy move - and no extra bytes!

In fact , we can now scrap all of $B21C-B223 and replace it with just one 'cle ar
carry '. Is that it? Well, nearly .

At the entry to the whole routine ($B147), $AO is expected to be 3 (set by the 'Cold
Start' procedure at $8D62) and the old garbage collector leaves it at 3. We've now
changed it to 4, so instead of crashing at the array search, we crash at the descriptor
search instead! However, we now have bytes to play with , so a DEC $AO before we
leave the routine ($B216) leaves everything perfect - honest!

A final tidy-up is to ditch a bit of assembler inefficiency at $B15D (Y is already 0 and
X doesn't matter) , and shuffle everything up. We now have a garbage collector that
not only works, but uses 15 cycles - and 5 bytes - fewer.

Addresses used
7B, 7C Start of variables
7D, 7E Start of arrays
7F, 80 Start of free memory
81, 82 Start of strings
85, 86 End of memory
71, 72 Working pointer to find the various string definitions
9C, 9D Pointer to the old pointer. 9D also serves as a flag : a search completed
without any qualifying strings being found leaves 0 in $9D.
AO Contents are the increment between the pointer to one string pointer and the
next. All the bugs live here!

For descriptor block, =3 (or should)
For string variables, =6 (and does)
For string arrays, =4 (not 3!)

A2 Used to determine which type of string is about to be moved ($821C). The final
contents are the distance between the 71, 72 pointer and the 'string length' byte in
the string definition.

For descriptor block, =0
For string variables, =2
For string arrays, =0

AA, AB Used to record the 'highest pointer so far'. Left pointing to the string to be
moved and used as such by the $A 1 D6 'move' routine.
A4, AS a) Used to point to the end of the block under examination (variables and
arrays only);

17

b) Used for the move routine to point at the byte at which the newly-moved string
will end ($A1D6 works backwards).
A6, Al Used by the move routine to point to the end of the string in its old
position.
65 Pointer to the string-building descriptor block of the highest order in use at the
time the GC routine was called.
68, 69, 6A; 6B, 6C, 6D; 6E, 6F, 70 3- level descriptor stack used in building strings.
Each triplet may contain a string definition, in the form: length, low address, high
address. All three need to be included in the garbage collection in case they define
substrings which were being assembled at the instant the GC routine was called.
A1D6 subroutine Moves a block of memory, $AA, AB - A6, Al to a new area,
ending at $A4, AS. Returns with X= 0 and Y= O and $A4, AS pointing to the byte which
would have been used next (but note that $AS is one less than its true value).

The decision to call the GC routine is made in the 'string space check ' subroutine at
$A21 F. The 'OM ERROR' caller is at the end ($A24C) and thi s runs on into the Warm
Start location, $A274 . $A21F is called from :

A1CF 'Record string' routine (latter part, from $A1D6 on, is used by GC itself).
AE8D 'Build array ' routine (called twice, at $AEA4 and $AEF3) .
8D11 'Cold-Start' calls $A21 F for 'Memory Size' check ($8f09) .

The GC is also called direct by the STR$ function at $813D and the FRE function at
$AFAD .

Also interesting (but irrelevant) is the fact that the 'string temporaries ' handling at
$BOAE has a 'number of orders ' test at $BEOF, and the 'ST ERROR' caller is at $BOF3.

Descriptors
B147 A685 LDX $85 ; initial entry
B149 A586 LDA $86
B14B 8681 STX $81 ; re-entry for further passes (update string-space ptr)
B14D 8582 STA $82
B14F AOOO LDY □$00 ; becomes a flag for 'GC complete ' (see 821A)
B151 849D STY $9D
B153 A57F LDA $7F
B155 A680 LDX $80
B157 85AA STA $AA ; becomes 'botto m of string space' pointer
B159 86AB STX $AB
B15B A968 LDA 0$68 ; to search descriptor block
B15D 8571 STA $71 ; (minor change - see notes above)
B15F 8472 STY $72
B161 C565 CMP $65 ; descriptor stack pointer
B163 FOOS BEQ $B16A
B165 20D7B1 JSR $B1D7 ; 'test this string' subroutine
B168 FOF7 BEQ $B161 ; always branch

Variables
816A A906 LDA 0$06 ; search increment
B16C 85AO STA $AO
B16E A57B LDA $7B ; set up search pointer
B170 A67C LDX $7C
8172 8571 STA $71
B174 8672 STX $72

18

'I

8176 E47E CPX $7E ; 'have all variables been searched?' (If yes, go to B183) () 'I) 81D9 F028 BEQ $8206 ; branch if yes 8178 D004 BNE $817E
817A C57D CMP $7D

B1DB INY

817C FOOS BEQ $8183
81DB CB INY
B1DC 8171 LDA (71),Y ; set X, A as pointer to pointer 817E 20D181 JSR $81D1 ; earlier entry checks 'is this a$ variable?' 81DE AA TAX 8181 FOF3 BEQ $8176 ; always branch 81DF CB INY

Arrays B1EO 8171 LDA (71),Y
8183 85A4 STA $A4 ; (71,72) will be left pointing to B1E2 C582 CMP $82 ; is this $ in 'free memory'?
8185 86A5 STX $AS ; first array block - store here 81E4 9006 BCC $81EC ; branch out if not
8187 A904 LDA □$04 ; search increment - change, see notes above B1E6 D01E BNE $8206
8189 85AO STA $AO B1E8 E481 CPX $81
8188 A5A4 LDA $A4 ; = start of arrays B1EA 801A BCS $8206
Q18D A6A5 LDX $AS B1EC CSAB CMP $AB ; is it the highest checked so far?
b18F E480 CPX $80 ; any (more) arrays? B1EE 9016 BCC $8206 ; branch out if not
8191 D007 BNE $819A e • B1FO D004 BNE $81F6
B193 C57F CMP $7F B1F2 E4AA C PX $AA
B195 D003 BNE $819A B1F4 9010 BCC $8206
B197 4C16B2 JMP $B216 ; exit point for Part 1- highest$ will have been found

; (all have been che cked by here) Co re of string-test subroutine
B19A 8571 STA $71 ; set pointer for array search B1F6 86AA STX $AA ; record string position in $AA, AB
B19C 8672 STX $72 B1F8 85AB STA $AB
B19E A001 LDY □$01 B1FA A571 LDA $71 ; and pointer position in $9C, 9D
B1AO B171 LDA (71),Y ; = '$ or numeric ' byte B1FC A672 LDX $72
B1A2 08 PHP ; i.e. push value of top bit , for'$ or numeric' B1FE 859C STA $9C
B1A3 CB INY B200 869D STX $9D
B1A4 B171 LDA (71),Y ; = ' length of array block' , low byte B202 88 DEY ; set up $A2 for 'move' routine - see notes
B1A6 65A4 ADC $A4 B203 88 DEY
B1A8 85A4 STA $A4 B204 84A2 STY $A2
B1AA CB INY B206 ASAO LDA $AO ; regardless of whether this one 'won ' or not ,
B1AB 8171 LDA (71),Y ; = ditto , high byte B208 18 CLC increment search pointer ready for the next test
B1AD 65A5 ADC $AS ; (A4,A5) now pointing to start of next array block B209 6571 ADC $71
B1AF 85A5 STA $AS B20B 8571 STA $71
B1B1 28 PLP B20D 9002 BCC $B211
B182 10D7 BPL $B18B ; if plus, this array is numeric - branch to look at next B20F E672 INC $72
B1B4 CB INY B211 A672 LDX $72
B185 B171 LDA (71),Y ; =' no.of dimensions' byte B213 AOOO LDY □$00
B187 OA ASL A ; X 2 + 5 gives position of first array element B215 60 RTS
B188 6905 ADC □$05 ; (LEN$ byte)
B1BA 6571 ADC $71 V ' \I.,/ B216

Part 2
B1BC 8571 STA $71 C6AO DEC $AO ; ready for next garbage collection - see notes
B1BE 9002 BCC $B1C2 ; update search pointer to point to it B218 A69D LDX $9D ; if $9D still O (see $B151) no string has been found
B1CO E672 INC $72 B21A FOFS BEQ $8211 (i.e. garbage co ll ect ion is finished)
B1C2 A672 LDX $72 B21C A4A2 LDY $A2 ; set up Y - see notes
B1C4 E4A5 CPX $AS ; 'finished this array pointer block?' B21E 18 CLC
B1C6 D004 BNE $B1CC B21F B19C LDA (9C),Y ; get LEN$
B1C8 C5A4 CMP $A4 B221 65AA ADC $AA
B1CA FOC3 BEQ $B18F B223 8SA6 STA $A6
B1CC 20D7B1 JSR $B1D7 ; 'test this string' subroutine B225 ASAB LDA $AB ; (AA, AB) = start of$; + LEN$ = end of$;
B1CF FOF3 BEQ $81C4 ; always branch 8227 6900 ADC □$00 store this in (A6 , A7)

8229 8SA7 STA $A7
'Test this string' subroutine 8228 AS81 LDA $81 ; copy 'next free memory location ' into (A4, AS)

B1D1 CB INY ; entry for variables 8220 A682 LDX $82
B1D2 8171 LDA (71),Y ; is it a string variable? () 0 822F 8SA4 STA $A4
B1D4 1030 BPL $8206 ; branch if not 8231 86AS STX $AS
B1D6 CB INY 8233 20D6A1 JSR $A1D6 ; block-moves (AA, AB)-(A6, A7) to new position
81D7 8171 LDA (71),Y ; (entry for others) is LEN$ = O? 8236 A4A2 LDY $A2 ending at (A4, AS) - updates latter

19 20

A

.,

B238
B239
B23B
B23D
B23E
B240
B242
B243
B24S

CB
ASA4
919C
AA
E6AS
ASAS
CB
919C
4C4BB1

INY
LDA $A4
STA (9C),Y
TAX
IN C $AS
LDA $AS
INY
STA (9C),Y
JMP $B14B

Changes to the original:

Essential
B187 A904 LDA □$04
B189 8SAO STA $AO
B204 88 DEY
B20S 88 D EY
B206 84A2 STY $A2
B218 C6AO DEC $AO
B21A A69D LDX $9D
B21C FOFS BEQ $B213
B21D EA NOP
B21E EA NOP
B21F EA NOP
B220 18 CLC

Non-essential
B1SF 8472 STY $72
B161 EA NOP
B162 EA NOP

; change '$ pointer low ' to new value

; (in crement because of an oddity in $A 1 D6 routine)

; change '$ pointer high ' to new value
; and back up to the top for anoth er pass

Shuffle as requ ired, to lo se th e f ive NOP s, th e n :
B16S 20D7B1 JSR $B1D7
B17E 20D1B1 JSR $B1D1
B197 4C16B2 JMP $B216
B1CC 20D7B1 JSR $B1D7

Disc System Notes

What with the 'specials' in this issue, we've run out of room to include the disc
system notes. We've received two different single-drive copy routines for 65D, a
fairly complete memory map of 65U, and a vast but disorganised and largely
unreadable mass of disc notes from Aardvark's Aardvark Journal and the semi
official newsletter Peek-65. To make up for its absence this issue, we will be having
a large Disc System Notes next issue - promise!

In the meantime , if you have any queries on 65D or 65U, or have anything to tell
us (please!) , please get in touch with us, and we ' Udo what we can!

21

Inexpensive hard-copy

For a relatively small sum (£15-£25) it is possible to purchase ex-GPO teleprinter s
which when interfa ced to your comput er provide a good quality output albeit with
some limitations in speed and the character set. This article briefly describes the
teleprinter operation and detail s the software and hardware necessary to interface
specifically to a CREED 7B teleprinter and the Challenger C2-4P; however inform
ation is included for users of C1/ Superboard and UK101 machines . Any Baudot
based printer may be used but there may be small variations with the figures-mode
character set which will have to be allowed for . When you obtain a teleprinter it is
worth determining if possible the machine 's operating code. Most use the 5-Qit
Baudot code, some have been configured to special code s and if you are really lucky
you may find one ASCII coded .

Teleprinter operation
The Baudot code , be ing 5 bit s long (plu s 1 start bit, plus 1½ stop bits) only allow s 32
(25) combination s of bit s with whi ch to convey information . However , in order to
increase the effe ctiv e character set, two of th ese combinations are used to define
the mode in whi ch the teleprint er op erates, nam ely ' letters ' or ' figures ', which
equate to lower and upp er case on a typ ewrit er. Thi s effe ctiv ely increases the
character set to 60; how ever, som e fun cti ons such as lin e-feed, carria ge- return etc.
are duplicated in both mod es so th e result ing numb er of characters redu ces to 56.
Table 1 list the allocation of th e 64 cod es. Wh en a teleprint er re<Zeives a mod e
command , it shift s to that mod e and remains mechani cally latched in that mod e
until it receives the alt ernat ive mod e comm and .

Software
The software as listed is located between $024016 and $02£5 inclu sive and uses
location $02FE to temporarily store the contents of the 'X' reg ister and $02FF to
memorise the teleprinter mode. This area of RAM is not used by BASIC and is not
overwritten when the machine is reset/ cold-started. The progr am how ever may be
located anywhere in RAM and has been written using relative br anches so that the
opcodes may be copied directly (with one exception) into any oth er area of RAM or
even placed in ROM , but $02FE-02FF will still be used as scratchp ad location s. The
exception is at $0250 in the source code : LDA $0287,X will need to be changed to
LOA equivalent ,X as necessary. If it is more convenient to the user, $02FE-02FF may
be redefined by changing the lines in the source listing that are marked with an
asterisk.

The program ($0240-02A7) is written as a subroutine and exp ects to find an ASCII
character code in the accumulator (A register) . $0240 simply calls the CRT driver
routine in BASIC and displays the character on the VDU . The remainder of the
program undertakes the ASCII to Baudot conversion by checkin g code limits and
outputing a space if outside these limits, looking up th e cod e to be output (from
table $02AB-02E5) , checking for and outputing if appropriate th e teleprinter mode
and finally outputing the Baudot mode.

The look -up table needs some explanation. The program takes in the character
code in the Accumulator and eventually places it in the 'X' register . This value ,
which is restricted by earlier checks to the range 2116-5F161 determines which
location in the table relative to the base address $0287 is to be loaded into the

22

1'

1

Baudot
value

in Hex

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
18
1C
1D
1E
1F

Notes:

Letters Mode

Character

NUL

E
LF

A
SPACE

s
I
u
CR

D
R
J
N
F
C
K
T
z
L
w
H
y
p

Q
0
B
G
(Figures)

M
X
V

(Letters)

ASCII

00
45
OA
41
20
53
49
55
OD
44
52
4A
4E
46
43
48
54
SA
4C
57
48
59
50
51
4F
42
47

4D
58
56

Table 1

Figures Mode

Character

NUL

3
LF

SPACE

8
7

CR

WHO ARE YOU?

4
BELL

%

(
5
+
)
2
£
6
0
1
9

a
(Figures)

I
=

(Letters)

ASCII

00
33
OA
2D
20
27
38
37
OD

(N/ A)
34
07
2C
25
JA
28
35
28
29
32
23
36
30
31
39
JF
40

2E
2F
JD

Alternative Figures
Mode

Character ASCII

NUL

3
LF

SPACE

8
7

CR

$
4

*

(
5
+
)
2
f
6
0
1
9
>
<
(Figures)

I

(Letters)

00
33
DA
2D
20
22
38
37
OD
24
34
2A
2C
38
JA
28
35
28
29
32
23
36
30
31
39
JE
JC

2E
2F
JD

1 Character Baudot value location in look-up table determined as ASCII value -
2016·

2 Value in look-up table is Bau dot value plus 00 ('letters-mode' characters) or plus
8016 ('figures-mode' characters).
3 Remaining positions in look-up table filled with 0416 (Baudot SPACE).

23

Accumulator. The values given in the table are such that bits 0-4 give the Baudot
code to be ultimately output and bit 7 indicates the mode in which the teleprinter
must be in order to receive the code . Bit 7 set to ' 1' indicates figures mode, and bit 7
set to '0 ' indicates letters mode .

The look-up table is listed for use with a CREED 7B fitted wi!h a normal character
set, therefore when any characters occur within the range 2116-SF,6 which do not
normally appear in the CREED set , a space is output. Table 1 however also lists my
proposals for an alternative figure s-mode set. This is based on my opinion of the
most wanted characters for BASIC or machine code working and utilises codes not
normally associated with character s. More on this later.

The program as listed is for the C2-4P under the standard OSI monitor; two
changes may have to be made to run on different machines and / or under different
monitors . For all C1, Superboard and UK101 systems the serial output subroutine is
at $FC81 , so the calls at $0273, 0288, 028F and $02AO should read JSR $FCB1. Under
Comp 's New Monitor for th e UK101 th e CRT call at $0240 should be JSR $FAS7;
under all versions of CEGMON th e CRT call may be un changed or (for the new
screen handler) changed to JSR $F836.

:,..,.·,k ~ cioml =-?iP<1>

R.15 4..?-KJl.

C

~

Q.16 IK.Jl

fcPK.J2t

2.-'b<.fl.

e,

+f>

r

6

.:I.

I(l).it,ll'F

Figure 1: Modification of baud rate. • ~:11>22.~F J.n. ·
300 baud with switch closed ; 50/ 110 baud (dependent on resistor value) with switch
open.

Hardware
Teleprinters such as the CREED 7B operate at 5Ji) baud whilst the computer normally
outputs at 300 baud. The C2/ C4 serial output fan be easily modified to output at SO
baud by the addition of two resistors and a switch to select 300 or SO baud operation
as shown in Figure 1 - the additional components are asterisked . To effect the
modification, locate R16 on the circuit board (see computer manual) and unsolder
one end. Lift this end clear of the circuit board, and solder two wires, one to the free
end and one to the pad on the circuit board from where R16 has been disconnected.
Space is limited, so ensure there are no short circuits . The two wires are now routed
to the back panel where a switch is mounted with the two additional resistors on its

24

,,.

25

0240 202GBF JSR IBF :G
024::: 4~: F'HA
0244 8EFE02 STX so :FE
02 47 (921 CMP #121
,324~ 902E sec s o~7~
024 8 c~~o CMP ~s~.o
0240 804 9 BCS 1029 8
024F AA TA:'
1)~50 E:O:~:-;""'o·:: LDH .f.0;.:::::7' '··'
0.:'.5-:. HA TA '.=·:
o-::5...:. 2•;1::: (1 Ht·<1[, #f' l::•(!
o.:::sr;:. [,OOF E:~~E f -0.26-;-"
0258 ADFF02 LOA 102FF
0~5 8 Fi)~D 8EQ f' 1l~~A
•J'.::5[1 H·? (1 (1 L[1A #1 O O
025F 8D~F O: ;TA 102FF
(12,':,2 t~'3FF L[•A #IF F
O.::.:E.4 1 ~: (..LC
0:::1":.:: ·:401_11 E:ci: .r.o::::·~:
::,.::,~.? F!C•FF02 LOA :r.o.::p: ·
1)-::+;H DO 2E E:t•~E t o.:::·?A
u26C A?FF LOA #S F~
026E 8[~ F02 ~TA 102FF
,.1.:::71 f;·"F E: L[•A #I -FE<
027 ~ 20158F J SR IB F15
u.:,-:-s,::. 1 ·:: CLC
1).::7"~ o::: 1
U27"·:~ :.!OH
(r .::~E: , (1 Ci~

o.::-;--c, r1:20.:::
0:2~F lO

o.:::::: 0 -~ 0 1 :: :
(1:::.::::::. C 9 0(1

c12·t:4 r , o 12
1;:.:::::t:. H9E ::::
(;.::_:::::::.: .2 0 l 5 E:F
(1::::3E: A•~E (1

BC C r 1)·2·?A
CMP #I OA
E:t·,E tt:1.:::=:,2
L[O:< #$ 02
CLC
E:CC :t O.:"::IR
U1F' #I I)[,
E:NE ro.::9:c:
LDA #SE •::
.J·::F.' :tE:F15
L[•H #SE O

028 [1 A203 LD>{ -~ 03
1)2E:F .:: 0 1 SE<F .J·;p IE<F 1 5
,:1~:·;1.:: CA C•E:c'
0293 DOFA BNE 1028F
0.29 5 1 6

0:296 900~
02?8 A2E4
~SA 8A
0298 2Q1F

CLC
BCC S02 9 A
LDX #SE4
T :":A
AND #$1~

,:,2-~c. 1 :=, cu:
1j~9E ~~EO fiGC #tEO
02AO 201~8F JSF.' 18F15

• O:A3 AEFE02 LOX S02FE
o:::Ht:. t;:.~: F·LH
::t2A7 61) ~·T:::

ASCll-to-Baudot routine

a) Assembly listing.

b) Conversion look-up table.

8 9 A 8 C D E F O 1 2 3 4 5 6
O-::A:-:: 04 :35 94 04 8C1 04 :=:5 ::::F -;a: 04 ·:;f 1 8C ::::3 '=-'f:. 9(1 ·~E-
0~88 97 93 81 8A 90 ~5 87 96 98 8E 04 04 9E 04 99 9A
t)2C:,: 03 1 9 OE 09 0 1 OC• 1 A 14 06 OE: OF 12 1 C OC 1 :::: 1 E.
o:c,8 1 ;-, OA ,:,5 1 o o7 1 E 13 1 c, 15 11 04 04 04 04

,'

back. The setting of the 2.2K variab le resistor is not criti cal so initially it may be set at
its midpoint and adjusted as necessary. It should be noted that thi s modification also
change s the cassette output frequency , thus the swi tch is required to allow the
cassette to operate at 300 baud .

To output the data I implemented the transistor RS-232 interface by installing U31,
Q2 , R55, R56 and R57 (see Figure 2) and breaking th e printed cir cuit track from pin 2
of U41, o th erwi se th e output of U41 would be in conte nti on-with the output from
Q2 . It may be necessary to generate a -9V supply to R57, but thi s depends on the
teleprinter driver circui tr y. With the circui t give n in Figure 3, a -9V supply is
unn ecessary (but acceptab le if already fitted), so I connected the -9V rail to earth.
Two points wo rth stat in g about Figure 3 are fir stly the circuit expects the input
current to be limit ed by the source. which in thi s instance is achieve d by R56 in
Figure 2; and second ly the opto - iso lator on th e input may appea r to be a bit exoti c,
but the back-EMF from the teleprinter coi l is several hundreds of vo lts so it is wi se to
ensur e this cannot reach the computer .

C1/ Superbo ard and UK101 users can readily implement their equivalent circ uits
to Figure 2, how ever, th e cassette clock s for th ese computers are derived from the
video divid er chain. For UK101 users I suggest the use of a 7492 (divide-by-2 and
d ivide-by-6) integrated circui t as indicated in Figure 4; however, not having any
detailed knowled ge of C1/ Superboards I cannot make any suggestions, but it is
possibl e th at Figure 4 also applies .

t'/> 11,55 11/JKfL

Figure 2: RS-232 interfa ce in computer.

Using the software routine

-t5

Q.'l. : 2.N29<115., Ee4-H

j):t:J \,t

R564'10>L

Rs, 1a:>K'.n.

-9v . , Earth G« tJ:xt ~

At this point C1/ Superboard and UK101 users (and also C2 users of CEGMON) have
a distinct advantage over standard C2/ C4 own ers in that their input/output

achine-code routines are accessed via vectors in page 2 of RAM . Thus to utilise the
.;outin e as written for BASIC and machine code working , their users can switch the
co mput er's output from the CRT driver to the co nversion routine by a POKE 538,64:
POK E 539,2 - either within a program or in the imm ed iate mode (in which the

26

'H •1

y -· -·--· -,,irr------------------------==

POKEs must be in one line). All output to the VDU will now be echoed on the
printer. For users of standard C2s all is not lost The routine can be readily used with
the Extended Monitor by using the built in monitor to change the co ntents of
locations $0862-0863 in ExMon from EE, FF16 to 4016, 0216 respectively . To use the
routine with BASIC however , is somewhat more complicated. I had originally
planned to program an EPROM with a revised monitor incorporating the Baudot
routine , however I think tne most prudent solution now would be to invest in the
User Group 's new monitor ROM (CEGMON) which does vector BASIC's support
routines through RAM . In all instan ces the routine can be initialised by outputing
two characters utilising opposite modes in the teleprinter - this is necessary to
synchronis e the mode of the teleprinter with the program .

I will conclude this part of the article with three brief specifi c points on the tele
printer . Firstly the alternative characters suggested in Table 1 are not available , but if
yo u can obtain a spare character set, standard chara cters can be adapted with a bit of
ingenuity, Le. '9' changed to ';' , 'K' adapt ed to '< ', ' Z' to ' > ', 'S' to '$', and 'X' to' X' ,
although it is possible to obtain a proper '*'. Two of my proposed chara cter s use the
' BELL' and 'Answ er back ' codes - the mec hani sms on the print er associated with
these codes will ne ed to be disabled and the new chara cte r heads inserted into the
corresponding empty locations in the print head . The second point is to try to obtain
a printed fitted with a synchronous motor-this minimises timing problems . Finally
I would reco mmend to anyone investing in a teleprinter to sight a copy of the Radio
Society of Great Brit ain publication 'Teleprinter Handbook '. This describes in great
detail the working s of several teleprinter models and also the setting-up tolerances .

°""' ~"'

TIL 111

ke;b:>.lti,{ ~
[

G:mtads t!l.,.. t
1f rcquued J ~ t5KQ.

Z,1 /'Vl

C-.5vJ

+56Vo--~ ----- ~ ----~

2..2.KA
2.Wl'ITT

'2.'Z.1e.n.
Q~ ,-,-

/1(9JJ. e;.11/ ~---
""'"""'

L_ _____ ___,, _____ ~ ------ '-----'- ---_.._ ___ _, _-, ¢v

..A11 ~1.XclQ _ ft;,_'w' unblo ot.hu-...1~ ~

Figure 3: Teleprinter drive circuit.
1. Keyboard contacts can be wired in as shown if required.
2. Configure teleprinter electromagnet connections so that it is inactive when
computer data output inert.
3. Input current must be limited by source, e.g . R56 in Fig.2.

27

It 14-
6864>

"fXC(J(

R,Q.;(

I I ..
~

If, ~-
TXW<

!.C6~ t
1474 L

lXCL.K

Figure 4: Suggested modification of baud rate for UK101 and possibl y C1/ Super
boards .
* Components additional.

+5 R.82. 1Kn._

19 I • 1X GK lwb85<DJ

I - ~71(Cl.J,<.

J.C. '5\Z

fr""' 125kHz; " l 2.1 '+4-16~
0/P : Jc59 ·
PIN 12..

12

Figure 5: Baud rate generator as fitted in UK101.
Component numbers relate to UK101 ; C1/ Superboard users should be able to read
across.

28

♦ ~~·n1

-r

C

'

Suggestions for 110 baud Teletype operation (send only)

Hardware modification
C2/C4 computers: Baud rate modification can easily be implemented on these
machines as described earlier , with the addition of the components marked with an
asterisk in Figure 1. The closing/opening of the switch will select 300/ 110 baud
operation respectively. The 2.2K linear preset should initially be set at a value of
1.77K using an ohmmeter or by eye approximately¾ travel from end 'A' in Figure 1.
It can then be adjusted if teletype operation is found unreliable. The baud range
achievable is approximately 107 to 120 with this value of preset.
UK101 and C1/ Superboard compUlers: On these machines the baud rate is derived
from the video divider chain culminating with the circuit shown in Figur e 5. The
co mponent numbers relate to the UK101, but hopefully C1/Superboard users can
read across. Users of these machines now have two choices open to them , either to
build a tidied-up version of Figure 1 and implement it as shown in Figure 6, or
implement th e circuit shown in Figure 7. Figure 6 would need setting up as for
C2/C4 computers, whereas Figure 7 - being derived ult imately from a crystal
oscillator - needs no setting up , but will run slightly slow at 108.5 baud and will
involve cutting a number of tracks on the circuit board.

f-<5

• 11 L...7Kn

6.BKn
6

1i1t=J f . .,,.,i.
IU'IOIO>ll~R '

~
IC6':!I

13

Figure 6: Proposal for 110 baud on UK101.
1. • Components additional.

;,

2. 10K-ohm preset should be set at approximately mid-travel and then adjusted as
necessary .
3. Similar modifications apply to Cl/Superboards.
4. Remaining connections on IC63 unchanged .

29

I'

Word format
Most teletypes operate with a word formatted with 1 start bit , 8 bits of information
and 2 stop bits . All C1/Superboard , C2/ C4 and UK101 systems set their ACIA to this
co ndition on start -up (C2/ C4 system s, and also UK101s und er Camp's New Monitor,
enable receive and transmit of interrupts ; standard C1/ Superboard and UK101s
don't). If your teletype does not use this fo rmat, refer to Leventhal , 6502 Assembly
Language Programmin g (O sborne / M cGraw -Hill), p.11-111, or to the 6850 data
sheet , for details of how to set up the ACIA acco rdingly .

1~kH z. ic59 ... 12.- -------,
31.251tHz, _ ____ _

U:64> ... 14-

I C6'1
'14163

11

~W 1 ~ /2,,.,wl IC63

Figu re 7: Alternative mod for 110 baud on UK101.
1. * Component, 3-pole 2-way swi tch additional.
2. Should apply to C1/ Superboard .
3. Remaining conn ection s on IC57, IC63, IC58 stay unch ange d .

For both 20ma and RS-232 interfaces a - 9V supp ly will be required .

-- -+---- +iov

~
T,.: l>AT1' 1$J<JJ.

..t:;v

Figure 8: 20 ma interface .
7. Install instead of RS-232 transistor.
2. Check current through resistors.

41.n. 112.w

iq-.Sl 1/z. ',/

..

30

"'

Interfaces
Teletypes are available fitted with one of three possible line units:

RS-232
20ma
80-0-80 volt Teleprinter Interface

RS-232 TxData can be implemented in accordance with the user manuals . 80-0-80
can be interfaced using the circuits of Figures 2 and 3 of the earlier part of this
article; however, it may be necessary to increase the supply voltage from 56V to 80V
and change the 2.2K 2-watt resistors to 3.3K 3-watt , and the 3.9K 1-watt resistor to
5.6K or 4.7K 2-watt . For a 20mA interface it is tentatively suggested that the circuit of
Figure 8 is tried instead of the RS-232 TxData circuit in the manuals.

Ray Fox

Copyright 1980 OSI UK User Croup, unless otherwise stated .

'Garbage co lle cto r ' listing : main text copyright Microsoft Inc.; alterations / corrections 'public domain'.

_,
,..,

·' ,)

~

t
.~ ·1

;J
l .~

